B- 7	B-TECH METALLURGICAL ENGINEERING, SEMESTER –III TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017												
			TEACHING SCHEME					EXAMINATION SCHEME					
SR	~~~~	a			STIC	IRS	Т	THEORY		PR	АСТ		
NO	CODE	SUBJECTS	T.	т	р	CREDITS	HOURS	CIE					TOTAL
						MID	IE	ESE	CIE	ESE	TOTAL		
1	SH0301	Differential Equations and Integral Transforms	03	02	00	04	05	30	10	60	00	00	100
2	MT0301	Mineral Processing	03	00	02	04	05	30	10	60	40	60	200
3	MT0302	Structural Metallurgy & Physics of Materials	03	02	00	04	05	30	10	60	00	00	100
4	MT0303	Fuels, Furnaces & Refractories	03	02	00	04	05	30	10	60	00	00	100
5	MT0304	Physical Metallurgy of Ferrous Alloys	03	02	02	05	07	30	10	60	40	60	200
6	MT0305	Environmental Pollution and Control in Metallurgical Industries	03	00	00	03	03	30	10	60	00	00	100
7	SH0307	Human Values and Professional Ethics	01	00	00	00	01	00	00	00	00	00	00
	TOTAL				04	24	31	180	60	360	80	120	800

B-T	ECH META	LLURGICAL ENGINEERIN WITH EI	1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A					IING	& EX	AMIN	ATIO	ON SC	HEME		
				ACHI HEM					EXA	MINA	ΓION	SCHE	ME		
SR	~~~~					STIC	IRS	T	THEORY		PR A	АСТ			
NO	CODE	SUBJECTS	L	LT		CREDITS	HOURS	C	CIE		CIE				TOTAL
			L	-	Р	0		MID	IE	ESE	CIE	ESE	TOTAL		
1	SH0401	Complex Analysis and Numerical Methods	03	02	00	04	05	30	10	60	00	00	100		
2	MT0401	Physical Metallurgy of Non- Ferrous Alloys	03	00	02	04	05	30	10	60	40	60	200		
3	MT0402	Introduction to Process Metallurgy	03	02	00	04	05	30	10	60	00	00	100		
4	MT0403	Transport Phenomena	03	02	02	05	07	30	10	60	40	60	200		
5	MT0404	Metallurgical Thermodynamics	03	02	00	04	05	30	10	60	00	00	100		
6	MT0405	Energy Economy and Waste Management	03	00	00	03	03	30	10	60	00	00	100		
7	CE0407	Cyber Security and Intellectual Property Right	01	00	00	00	01	00	00	00	00	00	00		
	TOTAL			08	04	24	31	180	60	360	80	120	800		

B-T	ECH META	LLURGICAL ENGINEERIN WITH E						ING &	& EXA	AMIN	ATIO	N SC	HEME
			TEACHING SCHEME						EXA	MINA	TION	SCHE	ME
SR	CODE					STIC	IRS	T	HEOR	Υ	PRACT		
NO	CODE	SUBJECTS	L	т	Р	CREDITS	HOURS	CIE					TOTAL
					MID	IE	ESE	CIE	ESE	TOTAL			
1	MT0501	Heat Treatment Principles and Practices	03	00	02	04	05	30	10	60	40	60	200
2	MT0502	Iron Making	04	00	02	05	06	30	10	60	40	60	200
3	MT0503	Foundry Technology	04	00	02	05	06	30	10	60	40	60	200
4	MT0504	Non Ferrous Extractive Metallurgy	03	02	00	04	05	30	10	60	00	00	100
5	MT0505	Plastic Deformation of Metals	03	02	00	04	05	30	10	60	00	00	100
6	MT0506	Surface Engineering	04	00	00	04	04	30	10	60	00	00	100
7	SH0507	Technical Communication and Soft Skills	01	00	00	00	01	00	00	00	00	00	00
	TOTAL				06	26	32	180	60	360	120	180	900

B-T	B-TECH METALLURGICAL ENGINEERING, SEMESTER –VI TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017												
			TEACHING SCHEME				EXAMINATION SCHEME				ME		
SR	~~~~					CREDITS	JRS	T	HEOR	Y	PRACT		
NO	CODE	SUBJECTS	L	Т	Р	REI	HOURS	C	Œ				TOTAL
			L	1				MID	IE	ESE	CIE	ESE	IOIAL
1	MT0601	Steel Making	04	02	00	05	06	30	10	60	00	00	100
2	MT0602	Electrometallurgy and Corrosion	04	00	02	05	06	30	10	60	40	60	200
3	MT0603	Powder Metallurgy	04	00	02	05	06	30	10	60	40	60	200
4	MT0604	Metal Forming	03	02	00	04	05	30	10	60	00	00	100
	MT0605	Material Characterization (EL – 1)											
5	MT0611	Computational Materials Science (EL – 1)	03	02	00	04	05	30	10	60	00	00	100
	MT0612	MOOC Course – 1 (EL – 1)											
	MT0606	Industrial Ceramics & Polymers (EL – 2)											
6	MT0607	Nano Technology (EL – 2)		0.0				20	10	50	0.0	0.0	100
	MT0608	Composite Materials (EL – 2)	04	00	00	04	04	30	10	60	00	00	100
	MT0609	Nuclear Metallurgy (EL – 2)											
	MT0610	Modelling of Metallurgical (EL – 2)											
7	SH0607	Advanced Technical Communication and Soft Skills	01	00	00	00	01	00	00	00	00	00	00
	TOTAL				04	27	33	180	60	360	80	120	800

B-TI	B-TECH METALLURGICAL ENGINEERING, SEMESTER –VII TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017												
		WITH E				ULY : I	2017	[
				CACHI CHEN				EXAMINATION SCHEME					
SR	CODE					STIC	JRS	T	HEOR	Y	PRA	ACT	
NO	CODE	SUBJECTS	L	Т	Р	CREDITS	HOURS	C	E				TOTAL
			-					MID	IE	ESE	CIE	ESE	101111
1	MT0701	Metal Joining Processes	03	00	02	04	05	30	10	60	40	60	200
2	MT0702	Non-Destructive Testing	04	00	00	04	04	30	10	60	00	00	100
3	MT0703	Alloy Design	03	02	00	04	05	30	10	60	00	00	100
4	MT0704	Material Testing and Standards	03	00	02	04	05	30	10	60	40	60	200
5	MT0705	Selection of Materials and Failure Analysis	03	02	00	04	05	30	10	60	00	00	100
	MT0706	Advanced Ferrous Metallurgy (EL – 3)											
	MT0707	Advanced Materials and Applications (EL – 3)											
6	MT0708	Advanced Foundry Technology (EL – 3)	04	00	00	04	04	30	10	60	00	00	100
	MT0709	Phase Transformations (EL – 3)	04	00	00	04	04	30	10	60	00	00	100
	MT0710	Advances in Thin Film Technology (EL – 3)											
	MT0711	Industrial Welding Codes and Standards (EL – 3)											
	MT0712	MOOC Course – 2 (EL – 3)											
7	7 CV0712 Disaster Management			00	00	00	01	00	00	00	00	00	00
	TOTAL				04	24	29	180	60	360	80	120	800

B-TH	B-TECH METALLURGICAL ENGINEERING, SEMESTER –VIII TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017												
			TEACHING SCHEME					EXA	MINA	TION	SCHE	ME	
SR	CODE					STIC	JRS	T	HEOR	RY	PRA	АСТ	
NO	CODE	SUBJECTS	L	т	Р	CREDITS	HOURS	CIE					TOTAL
								MID	IE	ESE	CIE	ESE	
1	MT0801	Project	00	00	40	20	40	00	00	00	120	180	300
	TOTAL			00	40	20	40	00	00	00	120	180	300

3RD SEMESTER

B-T	ECH META	LLURGICAL ENGINEERIN WITH E	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					ING &	& EXA	AMINA	ATIO	N SCI	HEME
			TEACHING SCHEME				EXAMINATION SCHEME						
SR	CODE					CREDITS	JRS	Т	THEORY		PRACT		
NO	CODE	SUBJECTS	L	Т	Р	REI	HOURS	C	E				TOTAL
			L	-	•	0		MID	IE	ESE	CIE	ESE	TOTAL
1	SH0301	Differential Equations and Integral Transforms	03	02	00	04	05	30	10	60	00	00	100
2	MT0301	Mineral Processing	03	00	02	04	05	30	10	60	40	60	200
3	MT0302	Structural Metallurgy & Physics of Materials	03	02	00	04	05	30	10	60	00	00	100
4	MT0303	Fuels, Furnaces & Refractories	03	02	00	04	05	30	10	60	00	00	100
5	MT0304	Physical Metallurgy of Ferrous Alloys	03	02	02	05	07	30	10	60	40	60	200
6	MT0305	Environmental Pollution and Control in Metallurgical Industries	03	00	00	03	03	30	10	60	00	00	100
7	SH0307	Human Values and Professional Ethics	01	00	00	00	01	00	0	00	00	00	00
	TOTAL			08	04	24	31	180	60	360	80	120	800

D TECH METALLUDCICAL ENCINEEDING SEMESTED III TEACHING & EXAMINATION SCHEME

Subject: Differential Equations and Integral Transforms									
Program: B. Tech Metallurgical EngineeringSubject Code: SH0301Semester: III									
Teaching Scheme Examination Evaluation Scheme									
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total	
3	2	0	4	4 24/60 0 16/40 0				100	

1. Course Outcomes :

- To provide an ability to see differential equations as a rigorous way of modeling physical phenomena.
- To provide an ability to derive major differential equations from physical principles.
- To provide an ability to understand the role of initial and boundary conditions in determining the solutions of equations.
- To provide an ability to choose and apply appropriate methods for solving differential equations.
- To provide an ability to undertake problem identification, formulation and solution.
- To provide an ability to calculate Laplace transforms and inverse Laplace transforms and uses them to solve differential equations (Initial value problems, Boundary value problems).
- To provide an ability to understand various concepts of Control System -Theory using Laplace Transform.
- To provide an ability to obtain Fourier series for simple periodic functions
- To provide an ability to understand Oscillation and Vibration related problems using Fourier Series and transform
- To provide an ability to obtain solution of the differential equations in form of the series using power series method.
- To provide an ability to communicate effectively with professionals within applied and engineering mathematics as well as with persons working with different scientific-technological applications in an interdisciplinary context.
- To provide an ability to develop abstract, logical and critical thinking and the ability to reflect critically upon their work and work of others.
- To provide an ability to insight their strengths and weakness as learners and to appreciate the value of errors or mistakes as powerful motivators to enhance learning and understanding.
- To provide an ability to interlink various engineering fields with Mathematics.
- To provide mathematical knowledge and skills needed to support their concurrent and subsequent engineering studies.

2. Contents:

		Time Allotted
Unit 1	Ordinary Differential Equations with applications: Revision of ordinary differential equation: Introduction of Mathematical Modeling, Basic Definitions, First Order First Degree Differential Equations, Variable Separable equation, Homogeneous Equation, Exact Differential Equations, Reduction of Non-exact Differential Equations to exact form using Integrating Factors, First Order Linear Differential Equation, Bernoulli Equation, Applications: Orthogonal Trajectories, Simple Electric Circuits, Solution of Linear differential equations of higher order with constant coefficients, complimentary function and particular integral	10 hours
Unit 2	Ordinary and Partial Differential Equations with applications: Method of variation of parameters, Method of Undetermined coefficients, Linear differential equations with variable coefficients (Cauchy's and Legendre forms), Simultaneous linear differential equations, Bessel and Legendre functions, Application of Linear differential equation - Application ofDeflection of Beams, Electric circuits, Series Solution of Ordinary Differential Equations – Power series method, Formation of Partial differential equations, Directly Integrable equations, Method of separation of variables, solution of one dimensional wave equation, heat equation and Laplace equation.	10 hours
Unit 3	Laplace transforms: Relation between Laplace and Fourier Transform, Definition, Linearity property, Laplace transforms of elementary functions, Shifting theorem, Inverse Laplace transforms, Laplace transforms of derivatives and integrals, Convolution theorem, Application of Laplace transform in solving ordinary differential equations, Laplace transforms of periodic, Unit step and impulse functions	10 hours
Unit 4	Fourier series, Fourier Integrals, Fourier Transforms and Z- Transforms: Fourier series, Drichlet's conditions, Euler's formula, Fourier expansion of periodic functions, Fourier series of even and odd functions, Half range Fourier series, Fourier integral theorem (only statement), Fourier sine and cosine integrals, Complex form of Fourier integral, Fourier transforms, Fourier sine and cosine transforms, Introduction to Z-transforms: Definition and Standard Z-transforms, Linearity Property, dumping Rule and some standard results, Some useful Z-transforms	12 hours

3. Text books:

1) Erwin Kreyszig: Advanced Engineering Mathematics (8th Ed.), Wiley Eastern Ltd., New Delhi.

4. Reference Books:

- 1) B. V. Ramana: Higher Engineering Mathematics, Mc Graw Hill, New Delhi.
- 2) Dr. B.S. Growl: Higher Engineering Mathematics, Khanna Publishers, New Delhi.
- 3) R K Jain, S R K Iyengar: Advanced Engineering Mathematics. Third Edition, Narosa Publishing House
- 4) Merel C Potter, J L Goldberg: Advanced Engineering Mathematics (3rd Ed.), Oxford India Publication.
- 5) Murray Spiegel: Advanced Mathematics for Engineering & Science: (Schaum's Outline Series), Tata McGraw Hill Publication

5. Digital Resources

http://freevideolectures.com/blog/2010/11/130-nptel-iit-online-courses/ http://nptel.ac.in/video.php?subjectId=122107036 http://ocw.mit.edu/index.htm https://www.khanacademy.org/

6. Activity Based Learning

Branch specific projects will be given to students as under:

- 1) Electrical Circuit
- 2) Signal system
- 3) Deflection problems
- 4) Starching problems
- 5) Oscillations Problems
- 6) Forced vibration of an elastic string
- 7) Vibration of Beam
- 8) Electrostatic potential
- 9) Model of Mass, spring system, Circuits, Network
- 10) Vibrating cable or chain

Subject: Mineral Processing									
Program: B.	Tech Metal	lurgical Engi	neering	Subject Cod	e: MT0301		Semester: III		
Teaching Scheme Examination Evaluation Scheme									
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total	
3	0	2	4	24/60	60	16/40	40	200	

1. Course Outcomes

- To make the students aware about basics of mining technology.
- To impart the knowledge about the basic steps followed in mineral dressing and its importance before extraction of pure metal from their respective ores.
- To develop the knowledge regarding the auxiliary operation and the advancement in mining technology.

2. Contents

		Allotted hours
Unit 1	Introduction and scope of mineral processing in extractive metallurgy, mineral resources in India, physical characteristics exploited in mineral processing, terminology in mineral processing. Physical and chemical characteristics of industrial minerals i.e. hematite, magnetite, galena, chalcopyrite, azurite, monazite, cassiterite, chromite, bauxite, and ilmenite, economics of ore processing.	8 hours
Unit 2	Liberation and its significance, Comminution and sizing, Laws of comminution, Crushing and Grinding- types, equipment, washing, sorting and hand-picking ; Laboratory and industrial screening- equipment, screen efficiency.	10 hours
Unit 3	Classifier- mechanical and hydraulic, sizing and sorting, classifiers, Mill calculation and Selectivity index. Gravity concentration methods, Tabling, Jigging, Heavy media separation, Separation in vertical and streaming currents, Sedimentation, Dewatering, techniques, Thickener, Filtration and Drying.	10 hours
Unit 4	Froth flotation: principles, reagents, collectors, modifiers and frothers, process variables in floatation, Tailings disposal, Process integration and, Study of flow sheet for important minerals. Magnetic and Electrostatic separation: principles, wet and dry separators, High tension separation, Motion of solid in fluid, Strokes and Newton's law, Free and hindered settling, Thickening, Batch and continuous settling, chambers. Application of computer in mineral processing.	10 hours

Experiment No.	Title
1	To study the crushers (primary and secondary) like jaw crusher and roll crusher and to measure their reduction ratios and capacities
2	To determine the reduction ratio of Coal.
3	To determine the reduction ratio of Coke.
4	To determine the reduction ratio of Iron ore.
5	To determine the reduction ratio of Ceramic material.
6	To study the sieve analysis of weighed powder sample
7	To study the ball mill and measure the grind ability of Ball mill
8	To determine the grindability of Coal.
9	To determine the grindability of coke.
10	To determine the grindability of Iron ore.
11	To determine the grindability of ceramic material.
12	To study the principle, operation and efficiency of laboratory classifier
13	To determine the efficiency of magnetic separation by varying strength of magnetic field
14	To study the coal and gravel separation using jig
15	To study the froth flotation of given sample of coal

3. Mineral Processing Lab (List of Experiments)

4. Text Book(s)

1) Principles of mineral dressing, by S.K.Jain. (2013)

5. Reference Books

- 1) Principles of Mineral Dressing, A. M. Gaudin, Tata McGraw Hill.(1980)
- 2) Mineral Processing Technology, B. A. Wills, Pergamon Press.(1992)
- Introduction to Mineral Processing, E. G. Kelly and D. J.Spottiswood, John Wiley & Sons. (1982)
- 4) Extraction Metallurgy, J. D. Gilchrist, Pergamon Press.(2006)

- 5) Extractive Metallurgy, Joseph Newton, Wiley Eastern.(1966)
- 6) Mineral Processing, E. J. Pryor, Pergamon Press.(1965)
- Extraction of Non-ferrous Metals, H. S. Ray and K. P. Abraham, Affiliated East West Press. (2006)
- 8) Experiments in Mineral Processing, S. Venkatachalam. (2011)

6. Digital Learning Resources :

www.youtube.com/watch?v=YO23kmDdLf8
www.youtube.com/watch?v=ZrJtzCfoqxI

7. Question Paper Pattern for End Sem Exam : As per Appendix A

		Sul	bject: Stru	ctural Metallur	gy & Physics of M	aterials		
Program: B. Tech Metallurgical Engineering				Subject C	ode: MT0302		Semester: III	
Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	2	0	4	24/60	0	16/40	0	100

1. Course Outcomes

- To provide knowledge about the basic structure of metals and alloys, which are the building block for developing macro and micro structure of metallic materials
- To provide knowledge about metallic and non-metallic type of bonding and their differentiation.
- To teach them about concept of polymorphism and others.
- To solve different numerical pertaining to crystal structure determination & phase diagram determination
- To give them knowledge about diffusion in solids.
- To teach them basics on nucleation and growth and its applications.
- To teach them about crystal defects in metallic materials their origin, causes and remedial measure.
- To provide basic knowledge about properties of materials such as electrical and thermal Conductivity, magnetism, dielectric properties.

2. Contents

		Allotted hours
Unit 1	Atomic Structure, types of bonds; ionic bonds, covalent bonds, Van der	12 hours
	Waals bonds, metallic bonds, metallic properties; crystalline vs. non-	
	crystalline solids. Inter-atomic Bonding. Interatomic distances.	
	Equilibrium & Kinetics: Macro and micro structure in metallic materials,	
	levels of structure, structure property relationships in materials,	
	Equilibrium & kinetics: stability & met stability, Basic thermodynamic	
	functions, The statistical nature of entropy, The kinetics of thermally	
	activated processes.	
Unit 2	The Structure of Crystalline Solids: Crystalline & non crystalline states,	10 hours
	covalent solids, Metals & alloys. Ionic solid, unit cell, space lattice, Crystal	
	geometry, crystal systems & Miller- Bravais lattices, Polymorphism or	
	allotropy, direction & planes, slip planes, atom sizes and coordination. Co-	
	ordination Number, atomic packing factor. Single crystal, Polycrystalline	
	& Non crystals.	

Unit 3	Isotropy & Anisotropy, Homogenous & Heterogeneous. Types of	10 hours
	deformation elastic & anelastic deformation, viscoelastic behavior, work	
	hardening & strain hardening, dislocation & strain aging, The Bragg's Law.	
	Diffraction methods, structure factor and its determination, Crystal	
	structure determination, Crystallite size determination	
Unit 4	Glass transition, Conductors and Resistors: The resistivity range, Free	8 hours
	electron theory, conduction by free electrons, conductor, Semi-	
	conductor, insulators and resistor materials.	
	Ferromagnetism, diamagnetism, paramagnetism, superconductivity,	
	dielectric behavior, thermal conductivity principles.	

3. Text Book(s)

- 1) Structure of Metals Crystallographic Methods, Principles & Data- Charles S. Barret & T.B.Massalski, Eurasia publishing house(Pvt.)Ltd., New Delhi(2004)
- 2) Theoretical Structural Metallurgy A.H.Cottrell, The English Language Book Society & Edward Arnold (Publishers) Ltd., U.K.(1959)
- Elements of X-ray diffraction B.D. Cullity, Addison Wesley Publishing Company Inc., U.S.A(1956)
- 4) Physical Metallurgy Principles Robert E-Reed-Hill, Affiliated East-West Press Private Ltd., New Delhi.(1991)

4. Reference Books :

1) Materials Science & Engineering by V.Raghavan 4th edition, PHI Pvt. Ltd. New Delhi

5. Digital Learning Resources

MIT Open Courseware: <u>http://ocw.mit.edu/OcwWeb/Materials-Science-and-Engineering/</u> Defects in Crystals: <u>http://www.tf.uni-kiel.de/matwis/amat/def_en/</u> Hyper Physics: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

6. Question Paper Pattern for End Sem Exam :

As per Appendix A

Subject: Fuel Furnace & Refractories								
Program: B. Tech Metallurgical Engineering				Subject Co	de: MT0303		Semester: III	
Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	2	0	4	24/60	0	16/40	0	100

1. Course Outcomes:

- Students will understand use of fuels and refractories in the different levels of the operational systems.
- Students will gain the knowledge of various types of high temperature changes and also the mode of fabrication for such changes used in the research areas and how to design those operations.
- Students can develop creativity for Pyro- Research.
- Co-relating the basic of the mechanical and high temperature properties and individual response and related over all logical changes and uses of the respective materials.
- Students can predict effectively and accurately the reasons of faults related to temperature and then correlate how to rectify.
- Students will know various considerations like laws of physics, chemistry and also factors of safety etc.
- Students will know of basic principles, working principles laws, related details, graphical details, applications and also a comparison study with each other.

2. Contents

		Allotted hours
Unit 1	Fuels: Classification of fuels, solid, liquid and gaseous fuel-their	8 hours
	advantages and limitations, Comparative study of solid, liquid and	
	gaseous fuels, Combustion of fuels, Combustion characteristics of fuel,	
	Analysis and testing of fuels, Carbonization of coal-coke making and by	
	products, producer gas, water gas, natural gas, LPG, Blast Furnace gas,	
	Coke oven gas, LD gas, storage of Fuels in transport, nuclear fuel, other	
	energy resources such as Solar, Wind, Geothermal, Bio-mass,	
	Hydrogen, Nuclear Energy.	
Unit 2	Furnaces and Furnace Design: Classification based on heating	10 hours
	methods, application wise and temperature ranges, Batch furnaces,	
	continuous furnaces, Construction and working of furnaces like Cupola,	
	Induction Furnace, Electric Arc Furnace, Resistance Furnace, Pit	

	furnace, Rotary Furnace, Muffle Furnace, Modern furnaces: plasma heating Furnace accessories (Burners, blowers, pumps, chimneys, drafts), thermal interactions in furnace, furnace atmosphere, heat economics, Furnace capacity and efficiency along with factors affecting it. Related numerical.	
Unit 3	Refractories: Introduction, concept of Refractoriness, requirements of good refractory material, classifications, types of the refractories and their individual manufacturing processes, Refractory properties, Testing and related machineries and how to control those machineries, a comparative study of the ternary phase diagram of different types of refractories, Details of Blast furnace refractory and LD Converters of Ladles, Castable refractory – preparation, fabrication and uses, Supper Refractories and their uses. Refractories numerical.	10 hours
Unit 4	Pyrometry: Basic concept of temperature measurement and control, Stefan's Boltzmann's theory and related ideas in temperature measurement, Thermometry, resistance thermometer - principle, constructional details, applications, Principle of thermocouple, construction and calibration of thermocouple, Different types of thermocouple for measurement of various temperature ranges, Optical Pyrometer and Radiation Pyrometer – Principle, construction, working principle, advantages, comparative study of Optical Pyrometer and Radiation Pyrometer	8 hours

3. Text Book(s)

1) O. P. Gupta, Elements of Fuels, Furnaces and Refractories, Khanna Publishers, 1998.

4. Reference Books

- 1) J. D. Gilchrist, Fuels, Furnaces and Refractories, Pergamon, 1977
- 2) W. Trinks, M. H. Mawhinney, Industrial Furnaces, John Wiley and Sons, 6th Edition, 2003.

5. Digital Learning Resources

http://nptel.ac.in/courses/113104008/ http://www.steeluniversity.org/content/html/eng/default.asp?catid=25 http://www.youtube.com/watch?v=yVZJP3u9Kek http://nptel.ac.in/courses/113104059/lecture_pdf/Lecture%209.pdf

6. Question Paper Pattern for End Sem Exam :

As per Appendix A

	Subject: Physical Metallurgy of Ferrous Alloys							
Program: B. Tech Metallurgical Engineering				Subject Co	de: MT0304		Semester: III	
Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	2	2	5	60	60	40	40	200

1. Course outcomes

After completion of this course students will be able to gain knowledge about following

Physical metallurgy is the study of the structure of metals and its influence on material properties and performance. It is an essential component of many areas of mechanical, manufacturing, civil, and materials engineering in the aerospace, automobile, transportation, energy, environmental, biomedical, and electronics industries as well as in engineering research and design for military and government applications. The courses in the minor provide the student with a broad introduction to the engineering science principles and applications associated with physical metallurgy.

2. Contents

		Allotted hours
Unit1	Introduction, solid Solution, Types of solid solution, Hume-Rothery Rules	10 hours
	for Primary Substitutional Solid Solubility, Types of Interstitial Voids,	
	Chemical compounds versus solid solution, Intermediate Phases,	
	Polycrystalline Materials, Grain Size, Measurement of Grain Size, Multiple	
	–Phase Alloys. Intermetallic compounds.	
	Solidification of Metals & Alloys: Structure of Liquid Metals, Energetic of	
	Solidification, Nucleation and growth phenomena, Homogenous &	
	Heterogeneous Nucleation, Growth of Solid, Smooth or Stable interface	
	growth, Temperature Inversion in pure Metals, Segregation, Porosity.	
	Numericals.	
Unit2	Concepts of alloy system and explanation of terms like system, component,	8 hours
	phase, micro constituent and degree of freedom, structural constituent of	
	an alloy, phase rule and phase equilibria, equilibrium diagrams and their	
	classification based on solubility of components in liquid and solid states,	
	cooling curves, morphology and distribution of phases, effect of non-	
	equilibrium cooling on morphology. Constitutional super cooling Unary	

	Diagram, Binary Phase Diagram, Use of Phase Diagram, Determination of Phase Diagrams, Limitation of Equilibrium Diagram, Zone Melting, Ternary Diagram, Numerical, Interpretation of Phase Diagram, Interpretation of Phase Diagram by using Lever Rule	
Unit3	Fe-Cementite Diagram Introduction, Allotropy of Iron, Cooling & Heating curves of Pure Iron, Effect of pressure on allotropy of Iron, Iron- carbon equilibrium diagram, phase Fe- Cementite diagram. Effect of Alloying element on Fe- Cementite diagram, effect of carbon on Fe- Cementite. Critical temperature in Fe- Cementite diagram. Physical significance of grain size: Grain size effects, Grain size designation, Grain size measurement. Interpretation of Phase Diagram.	10 hours
Unit4	SteelsClassification and application of carbon steels, Plain carbon steels, Advantages and limitations of Plain carbon steels, Effect of impurity elements on the properties of steels, Purpose of alloying of steel, Functions of alloying elements in steel, Effects of alloying elements on the properties of steels, Steel Specifications-according to AISI, Indian grades, and UNS.Cast Iron Introduction, Cast Irons, Various Types, Properties & Applications, ADI – Austempered Ductile Cast Iron. Cast Iron Specifications – according to AISI and Indian Grades.Metallography Microscopic examination, Polishing techniques for different metals and alloys, Etching and Mounting techniques, Difference between Macro & Micro Etching, electrolytic polishing Metallurgical microscope, Macroscopic & Microscopic examination methods, Nonmetallic inclusions.	10 ours

3. Physical Metallurgy I Lab (List of Experiments)

Experiment No	Title
1	Study of optical microscope.
2	Specimen preparation for metallography.
3	Study and preparation of etching agents
4	Mounting of specimen.

5	Plotting of Thermal Equilibrium Phase Diagram of Binary alloys and pure metal by Cooling Curve Method.
6	Application of Gibb's Phase Rule for confirming the accuracy of Unary and Binary Phase Diagrams
7	Microstructure observation of Pure metals
8	Application of Lever Rule for Phase, Phase Composition & Phase Fraction (Binary Alloys)
9	Microstructural observation of Steels.
10	Microstructural observation of Cast Irons.
11	Study of phase diagrams for structure-properties correlation.
12	Eutectic, Hypo- And Hyper-Eutectic Alloys: Al-Si (Unmodified), Al-Si (Modified), Pb-6wt%Sb, Pb- 11.1 Wt%Sb And Pb- 20 Wt%Sb
13	Peritectic And Monotectic Alloys: 60:40 (+) Brass, 70:30 () Brass, Cu- 10wt%Sn, Cu- 36wt% Pb, Cu- 50 Wt% Pb*
14	Grain size measurement
15	Understanding SAE, AISI, UNS and Indian Standards for Steels.

4. Text books

1) Physical Metallurgy – Vijendra Singh (2012)

5. Reference books

- 1) Physical Metallurgy Principles Robert E Reed-Hill and Reza Abbaschian(2008)
- 2) Phase Transformation in Metals & Alloys D A Porter & K Easterling(1992)
- 3) Physical metallurgy by Avner-(1997)
- 4) Physical Metallurgy Peter Haasen(1996)
- 5) Structure and Properties of Alloys R M Brick, R B Gordon, A. Phillips(2002)
- 6) Physical Foundations of Materials Science G. Gottstein (2004)
- Physical Metallurgy and Advanced Materials Engineering R.E. Smallman and A.H.W. Ngan (2007)

6. Digital learning resources

http://nptel.ac.in/courses/113105024/

7. Question paper pattern for end sem exam

As per Appendix A

	Subject: Environmental Pollution and Control in Metallurgical Industries								
Program: B. Tech Metallurgical Engineering					Subject Cod	le: MT0305		Semester: III	
Teaching S	Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	The	versity eory mination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	0	0	3		60	0	40	0	100

1. Course Outcomes:

- To understand the sources of Air pollution.
- To understand the various effects of pollution on human health, vegetables etc.
- From application point of view students can learn how to measure the air pollution
- It will help students to understand how to reduce or control the pollutants.

2. Contents

		Allotted hours
Unit 1	Introduction: Definition, air pollution episodes, general nature of air pollution problems	8 hours
	Air Pollutants, Sources & their inventory: Particulate matter, carbon dioxide, carbon Monoxide, sulphur oxide, effects of hydrocarbon, oxide of nitrogen, photochemical oxidants, asbestos and metals on materials and health.	
Unit 2	Effects of Air Pollution: Effects of air pollution on human, vegetation, animals and Materials.	10 hours
	Meteorology: Introduction, solar radiation, wind circulation, lapse rate, stability conditions, wind velocity profile maximum mixing depth, wind rose turbulence, and general characteristics of plumes, heat island effect, and global circulation of pollutants.	

Unit 3	Pollution in Metal Industries: Pollution in Iron and Steel industries and Non-ferrous Metals (Cu, Al, Zn, and Pb) industries and its control, Pollution Control in Ferrous & Non-ferrous Foundries.	10 hours
Unit 4	Air pollution and control due to toxic and non-toxic gases, fumes, dust etc. during combustion, heating and roasting processes and industrial production, control methods, cleaning of gaseous effluents, recovery of economic value from gases. Noise pollution Sources, effects and control Odor problem Causes and control.	10 hours

3. Text Book(s)

- 1) Environmental Pollution Control Engineering by C S Rao, 2006.
- 2) Air Pollution Rao & Rao. Tata McGraw-Hill Publishing Ltd, 2007.

4. Reference Books

- 1) Environmental Pollution Studies by Gerald Arthur Best, 1999.
- 2) Understanding Environmental Pollution by Marquita K. Hill, 2010.
- 3) Air Pollution Henry C. Perkins. Tata McGraw-Hill Publishing Ltd, 1947.
- 4) Air Pollution, its origin and control Wark & Warner, 1998.
- 5) Environmental Pollution and Control by J. Jeffrey Peirce, P Aarne Vesilind, Ruth Weiner, 1998.

5. Digital Learning Resources

http://nptel.ac.in/courses/Webcourse-contents/IIT-Delhi/Environmental%20Air%20Pollution/

http://nptel.ac.in/video.php?subjectId=105104099

http://www.youtube.com/watch?v=4AuwG2G_ERU

http://www.youtube.com/watch?v=5hKjurPjzwI

http://textofvideo.nptel.iitm.ac.in/105104099/lec38.pdf

6. Question Paper Pattern for End Sem Exam:

As per Appendix A

	Subject: Human values & professional Ethics								
Program: B	. Tech Meta	llurgical En	gineering	Subject Co	ode: SH0307		Semester: III		
	· · · · ·								
	Teaching	Scheme		Ex	amination Eva	luation Schem	ie		
				University	University	Continuous	Continuous	Total	
				Theory	Practical	Internal	Internal		
				Examination	Examination	Evaluation	Evaluation		
						(CIE)-	(CIE)-		
Lecture	Tutorial	Practical	Credits			Theory	Practical		
1	0	0	0	60	00	40	00	100	

Course Objectives:

- 1. To create an awareness on Engineering Ethics and Human Values.
- 2. To understand social responsibility of an engineer.
- 3. To appreciate ethical dilemma while discharging duties in professional life.

Contents:

Unit 1: Values and Self Development

Social Values and individual Attitudes, Work ethics, Indian vision of Humanism, Moral and non moral valuation, Standards and principles, Value judgments. Importance of cultivation of values, Sense of duty, Devotion, Self reliance, Confidence, Concentration, Truthfulness, Cleanliness, Honesty, Humanity, Power of faith, National unity, Patriotism, Love for nature, Discipline.

Unit 2: Personality and Behavior Development

Soul and scientific attitude. Goad and scientific attitude, positive thinking, integrity and discipline, punctuality, love and kindness. Avoiding fault, finding. Free from anger, Dignity of labor, Universal brotherhood and religious tolerance, True friendship, Happiness vs. suffering love for truth. Aware of self destructive habits, Association and cooperation, doing best, saving nature.

Unit 3: Character and Competence

Science vs. God, Holy books vs. Blind faith, Self management and good health, Science of reincarnation, Equality, Nonviolence, Humility, Role of women, All religions and same message, Mind your mind, Self control, Honesty, Studying effectively.

Unit 4: Engineering Ethics

Senses of 'Engineering Ethics', variety of moral issues, types of inquiry, moral dilemmas, moral autonomy, Kohlberg's theory, Gilligan's theory, consensus and controversy, models of professional roles, theories about right action, self interest, customs and religions, uses of ethical Approved Vide Agenda Item No. 03 of Minutes of Meeting of Academic Council held on 11 July 17

04 hours

04 hours

04 hours

04 hours

theories, Valuing time, Co-operation and commitment, Code of ethics, Sample codes – IEEE, ASCE, ASME and CSI.

Text Books:

1. Chakraborty, S. K., Values and Ethics for Organization Theory and Practice, Oxford University Press, New Delhi, 2001

- 2. Gaur R. R., Sangal R., Bagaria G. P., A foundation course in Value Education, 2009.
- 3. Gaur R. R., Sangal R., Bagaria G. P., Teacher's Manual, 2009.
- 4. Mike Martin and RolandSchinzinger, Ethics in Engineering, Mc Graw Hill. New York, 1996.

Reference Books:

- 1. Govindrajan M., Natrajan S. and Senthil Kumar V. S., Engineering Ethics (including Human Values), Prentice hall of India Ltd., New Delhi, 2004.
- 2. Frankena, W. K., *Ethics*, Prentice Hall of India, New Delhi, 1990.
- 3. Dhar P. L., Gaur R. R., Science and Humanism, Commonwealth Publishers, 1990.
- 4. TripathyA. N., Human Values, New Age International Publishers, 2003.
- 5. Seebauer E. G. and Robert L. Berry, *Fundamentals of Ethics for Scientists and Engineers*, Oxford University Press, 2000.
- 6. Banerjee B. P., Foundations of Ethics and Management, Excel Books, 2005.
- 7. Bajpai B. L., Indian Ethos and Modern Management, New Royal Book Company, 2004.

4TH SEMESTER

B-T	B-TECH METALLURGICAL ENGINEERING, SEMESTER –IV TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017														
			TEACHING SCHEME						EXAN		MINA	ΓΙΟΝ	SCHE	ME	
SR	~~~~					STIC	IRS	T	HEOR	Y	PR A	АСТ			
NO	CODE	SUBJECTS	L	Т	Р	CREDITS	HOURS	CIE		CIE					TOTAL
			2		-)		MID	IE	ESE	CIE	ESE	101112		
1	SH0401	Complex Analysis and Numerical Methods	03	02	00	04	05	30	10	60	00	00	100		
2	MT0401	Physical Metallurgy of Non- Ferrous Alloys	03	00	02	04	05	30	10	60	40	60	200		
3	MT0402	Introduction to Process Metallurgy	03	02	00	04	05	30	10	60	00	00	100		
4	MT0403	Transport Phenomena	03	02	02	05	07	30	10	60	40	60	200		
5	MT0404	Metallurgical Thermodynamics	03	02	00	04	05	30	10	60	00	00	100		
6	MT0405	Energy Economy and Waste Management	03	00	00	03	03	30	10	60	00	00	100		
7	CE0407	Cyber Security and Intellectual Property Right	01	00	00	00	01	00	00	00	00	00	00		
		TOTAL	19	08	04	24	31	180	60	360	80	120	800		

	Subject: Complex Analysis and Numerical Methods							
Program: B	Program: B. Tech Metallurgical Engineering Subject Code: SH0401 Semester: IV							
Teaching S	Teaching Scheme Examination Evaluation Scheme							
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	2	0	4	60	0	40	0	100

2. Course outcome

After completion of this course students will be able to gain knowledge about following

- To provide an ability to understand, interpret and use the basic concepts: complex number, analytic function, harmonic function, Taylor and Laurent series, singularity, residue, conformal mapping, meromorphic function.
- To provide an ability to prove certain fundamental theorems about analytic functions, e.g. Cauchy's integral formula
- To provide an ability to determine the images of curves under simple complex mappings.
- To provide an ability to determine the stability of certain dynamical systems using complex functions.
- To provide an ability to use conformal mapping to solve certain applied problems regarding heat conduction, electrical engineering and fluid mechanics.
- To provide an ability to use Taylor and Laurent expansions to derive properties of analytic and meromorphic functions.
- To provide an ability to compute integrals by means of residues.
- To examine common numerical methods such as finite element and finite difference techniques, including the strengths and weaknesses of particular applications.
- To discuss the concept of approximation in geometric and engineering applications.
- To provide an ability to utilize a systems approach to design and operational performance.
- To provide an ability to formulate mathematical models, choose suitable methods to investigate these models including the efficient use of computer tools.
- To provide an ability to analyze zeros and poles of meromorphic functions, classify singularities
- To provide an ability to identify various mathematical problems and reformulate these in a way suitable for numerical treatment.
- To provide an ability to select a suitable numerical method for the treatment of the given problem.

- To provide an ability to solve various engineering problems including tabular data.
- To provide an estimate of the accuracy of the results.
- To provide an ability to communicate effectively with professionals within applied and engineering mathematics as well as with persons working with different scientific-technological applications in an interdisciplinary context.
- To provide an ability to develop abstract, logical and critical thinking and the ability to reflect critically upon their work and work of others.
- To provide an ability to interlink various engineering fields with Mathematics.
- To provide mathematical knowledge and skills needed to support their concurrent and subsequent engineering studies.

3. Contents

		Allotted hours
Unit 1	Complex Analytic Functions:	8 hours
	Complex Numbers, Demoivere's Theorem, Roots of Complex	
	Numbers, Elementary complex functions, Complex planes, Curves in	
	complex planes, Concept of neighborhood in The complex plane,	
	Analytic function, Cauchy- Riemann equations (Cartesian and polar	
	forms – without proof), Harmonic functions, conformal mappings,	
	some standard conformal transformations.	
Unit 2	Interpolation	10 hours
	Finite differences and Interpolation: Finite differences Forward,	
	Backward & Central difference operators and difference tables.	
	Interpolation, Interpolation Formulae with equal intervals: Newton's	
	forward, Newton's backward, Central difference interpolation by	
	Stirling's formulae	
	Interpolation Formulae with unequal intervals: Lagrange's &	
	Newton's divided difference interpolation	
	Numerical Integration: Trapezoidal rule, Simpson's 1/3 rule,	
	Simpson's 3/8 rule.	
	Numerical differentiation: Using Newton's forward and backward	
	interpolation formula	
Unit 3	Numerical Methods: Basic Errors.	10 hours
	Solution of Algebraic and Transcendental Equations: Bisection	
	method, Regula-Falsi method, Newton-Raphson method,	
	Convergence condition for these methods.	

4.Text books

1) Erwin Kreyszig: Advanced Engineering Mathematics (8th Edition) Wiley Eastern Ltd., New Delhi (1999).

5.Reference Books

- 1) R. V. Churchill and J. W. Brown: Complex variables and applications (7th Edition), McGraw-Hill (2003)
- 2) B. V. Ramana: Higher Engineering Mathematics, McGraw Hill, New Delhi (2008).
- 3) Merel C Potter, J L Goldberg: Advanced Engineering Mathematics (3rd Edition) Oxford India Publication (2005).
- 4) Dr. B.S. Growl: Higher Engineering Mathematics, Khanna Publishers, New Delhi (2000).
- 5) R K Jain, S R K Iyengar: Advanced Engineering Mathematics. Third Edition, Narosa Publishing House (Reprint2014).
- 6) Murray Spiegel: Advanced Mathematics for Engineering & Science: (Schaum's Outline Series), TataMcGraw Hill Publication (2009).

6.Digital learning resources

http://freevideolectures.com/blog/2010/11/130-nptel-iit-online-courses/ http://nptel.ac.in/video.php?subjectId=122107036 http://ocw.mit.edu/index.htm https://www.khanacademy.org/

7. Question paper pattern for end sem exam

As per Appendix A

Subject: Physical Metallurgy of Non–Ferrous Alloys								
Program: B. Tech Metallurgical Engineering Subject Code: MT0401					Semester: IV			
Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	0	2	4	60	60	40	40	200

1. Course outcomes

After completion of this course students will be able to gain knowledge about following

Due to specialized requirements, nonferrous alloys application are increasing due to low weight, higher conductivity, non-magnetic property and resistance to corrosion so it is required for student to understand physical metallurgy of nonferrous metals and alloys for specific application. This course emphasize on different nonferrous metals and alloy phase diagram, their heat treatment to modify their properties and applications and to choose or design heat treatment for given metal and alloy.

2. Contents

		Allotted hours
Unit1	Introduction	8 hours
	Introduction to non-ferrous metals & their alloys: Aluminum	
	Alloys, Copper Alloys, Nickel Alloys, Magnesium Alloys,	
	Titanium Alloys, Lead Alloys, Zinc Alloys, Tin alloys, Babbitts	
	(Antifriction Alloys).	
Unit2	Aluminum and its alloys:	10 hours
	Classification of Aluminum Alloys, Grades of Aluminum alloys,	
	Non-heat treatable Wrought Aluminum Alloys, Heat treatable	
	Wrought Aluminum Alloys, Cast Aluminum Alloys with their	
	Phase Diagrams, Compositions, heat treatments, properties and	
	applications. Heat treatment of Aluminum alloys, titanium alloys	
	and copper alloys, Concept of age-hardening.	
	Copper and its alloys:	
	Copper, Brass and Bronze Phase Diagrams, Compositions, heat	
	treatments, properties and applications, Grades of Copper alloys.	

Unit3	Nickel and its alloys:	10 hours
	Ni-Cr alloys, Ni-Al alloys, Ni-Cr-Al alloys, Ni-Cr-Al-Ti alloys,	
	Complex Nickel- base alloys Phase diagram with compositions,	
	Heat treatments, properties and applications, Grades of Ni alloys.	
	Magnesium and its alloys:	
	Classification of Magnesium Alloys, Wrought Magnesium Alloys,	
	Cast Magnesium Alloys with their Phase Diagrams, Compositions,	
	heat treatments, properties and applications.	
	Titanium and its alloys:	
	Compositions, heat treatments, properties and applications.	
Unit4	Lead, Zinc and Tin and their alloys:	10 hours
	Lead and Its alloys Phase Diagrams, Compositions, heat treatments,	
	properties and applications., Zinc and its alloys Phase Diagrams,	
	Compositions, heat treatments, properties and applications., tin and	
	its alloys Phase Diagrams, Compositions, heat treatments,	
	properties and applications.	
	Babbitts (Antifriction alloys):	
	Phase Diagrams, Compositions, heat treatments, properties and	
	applications.	

3. Physical Metallurgy of Non-Ferrous Alloys Lab (List of Experiments)

Experiment No	Title
1	Specimen preparation for non-ferrous metallography
2	Study and preparation of etching agents for non-ferrous alloys
3	Microstructure observation of Pure non-ferrous metals
4	Application of Lever Rule for Phase, Phase Composition & Phase Fraction (Binary Alloys)
5	Microstructural observation of Aluminum Alloys
6	Microstructural observation of Copper Alloys
7	Microstructural observation of Brass
8	Microstructural observation of Bronze
9	Microstructural observation of Lead Alloys

10	Microstructural observation of Zinc Alloys
11	Aging Treatment of Al-Cu Alloy
12	Eutectic, Hypo- And Hyper-Eutectic Alloys: Al-Si (Unmodified), Al-Si (Modified), Pb-6wt%Sb, Pb- 11.1 Wt%Sb And Pb- 20 Wt%Sb
13	Peritectic And Monotectic Alloys: 60:40 (+) Brass, 70:30 () Brass, Cu- 10wt%Sn, Cu- 36wt% Pb, Cu- 50 Wt% Pb*
14	Grain size measurement
15	Understanding SAE, AISI, UNS and Indian Standards for non-ferrous alloys.

4. Text books

- 1) Engineering Physical Metallurgy by Lakhtin, CBS Publisher
- 2) Physical Metallurgy for Engineers Donald S. Clark, & Wilbur R. Varney, CBS Publishers & Distributors, New Delhi
- 3) Heat Treatment, Structure and Properties of Non-ferrous Alloys Charlie R. Books, 1982, ASM.
- 4) Introduction to Physical Metallurgy Sidney H. Avner, McGraw-Hill Book Company, New Delhi
- 5) Heat Treatment Principle and techniques T V Rajan, C P Sharma, Ashok Sharma , Second Edition, PHI Publications.

5. Reference books

- 1) Phase Transformation in Metals & Alloys D A Porter & K Easterling(1992)
- 2) Metals Handbook Ninth Edition Vol.2, Properties and Selection: Non-ferrous alloys and Pure Metals, American Society for Metals, Metals Park, Ohio.
- 3) Physical Foundations of Materials Science G. Gottstein (2004)
- 4) Physical Metallurgy and Advanced Materials Engineering R.E. Smallman and A.H.W. Ngan (2007)

6. Digital learning resources

www.nptel.ac.in http://engineershandbook.com/Materials/nonferrous.htm https://manufacturability.wordpress.com http://www.steelforge.com/literature/ferrousnon-ferrous-materials-textbook

7. Question paper pattern for end sem exam

As per Appendix A

Subject: Introduction to Process Metallurgy										
Program: B. Tech Metallurgical Engineering				Subject Code: MT0402			Semester: IV			
Teaching Scheme				Examination Evaluation Scheme						
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total		
3	2	0	4	60	0	40	0	100		

1.Course Outcomes

After completion of this course students will be able to gain knowledge about following

- Students will able to gain knowledge about the basic mechanism affecting the different extraction techniques such as Pyrometallurgical, Hydrometallurgical & Electro metallurgical extraction processes.
- The students will aware about the requirement of various devices required for carrying out different extraction processes.
- They will able to analyze various factors affecting these extraction processes.
- Students will gain knowledge about the concept of reaction kinetics & its role in understanding the extraction processes.

2. Contents

		Allotted hours
Unit 1	Basics of Pyrometallurgical Processes, Drying, Calcination, Agglomeration, Sintering, Roasting, Smelting. Converting, Refining	8 hours
	processes with examples for metals like Aluminum, Copper, Zinc, and	
	Lead.	
Unit 2	Basics of Hydrometallurgical processes, Fundamentals of Unit processes and Unit operations, Principles and types of Leaching, Kinetics of leaching, and Refining of leached solution, Solvent extraction and ion-exchange processes, Cementation, Gaseous reduction of metals.	10 hours
11.4.2		10 h ou m
Unit 3	Basics of Electrometallurgical processes: Electrowinning and Electrorefining, Aqueous/Fused salt electrolysis. Flow-sheets of	10 hours

	Extraction of Important Metals, Simplified Flowsheets for the production of Iron, Steel, Aluminum, Copper, Zinc and Lead.	
Unit 4	Reaction kinetics, kinetics of metallurgical processes and material, velocity/rate of reaction, factors affecting rate of reaction, Order of Reaction and molecularity, zero, first, second order and order of reaction, Pseudo-unimolecular reaction, half life period, determination of order of reaction, integration method, half period method, graphical method, Ostwald's isolation method, rate constants, Arrhenius equation, collision theory, Activation Energy, activation energy profile of an exothermic reaction, activation energy barrier, theory of absolute reaction rate.	10 hours

3. Text Book

- 1) Principles of extractive metallurgy, H.S. Ray, A. Ghosh (2007).
- 2) Extraction of nonferrous metals, H.S. Ray, R. Sridhar and K.P. Abraham Affiliated East West Press Pvt Ltd., New Delhi (2007).
- 3) Metallurgical Thermodynamics Kinetics & Numericals by Dr. S.K.Dutta, (2011), S. Chand Publication.

4. References:

- 1) W.H. Dennis, Extractive Metallurgy, Philosophical Library, New York (1965)
- 2) F. Habashi, Principles of Extractive Metallurgy, Vol.1, Gordon and Breach, New York (1969).
- 3) T. Rosenqvist, Principles of Extractive Metallurgy, McGraw Hill, New York (1983)
- 4) J.L. Bray, Nonferrous production metallurgy, Wiley, New York(1954)
- 5) R.D. Pehlke, Unit processed in extractive metallurgy, Elsevier, Amsterdam (1082)
- 6) H.S. Ray and A. Ghosh, Principles of extractive metallurgy, Wiley Eastern Ltd., New Delhi (1991)
- 7) Introduction to melts molten, salts and slags, Allied Pub. Pvt. Ltd., New Delhi (2006)
- 8) H.S. Ray, B.P Singh and Sarama Bhattacharjee, Energy in minerals and metallurgical processes, Allied Publishers Ltd, New Delhi (2005)

5. Digital Learning Resources

http://nptel.ac.in/courses/113105021/ www.youtube.com/watch?v=xa9wR4sknh0 http://encyclopedia2.thefreedictionary.com/Pyrometallurgy

6. Question Paper Pattern for End Sem Exam:

As per Appendix A

	Subject: Transport Phenomena								
Program: B.	Program: B. Tech Metallurgical EngineeringSubject Code: MT0403Semester: IV								
Teaching S	Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	The	versity ory mination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	2	2	5		60	60	40	40	200

Course Outcomes

After completion of this course students will be able to gain knowledge about following

- To provide knowledge about the basic concept of heat transfer and its different modes.
- To analyze different modes of heat transfer with examples in day to day life.
- To demonstrate the application of various factors & mathematical equations governing the heat transfer in the system.
- To solve different numerical pertaining to all three modes of heat transfer for different systems.
- To demonstrate the phenomena of conduction, convection & Radiation by conducting laboratory scale experiments.
- To make the students understand the concept of fluid behavior & its relevance for different modes of mass transfer.
- To analyze the mass & momentum balance equations to understand the diffusion phenomenon in metallurgical systems.

2. Contents

		Allotted hours
Unit1	Fluid flow and its relevance to mass transfer. General mass transport	8 hours
	equation. Modes of mass transfer. Film and boundary layer theories.	
	Diffusion, Generalized diffusion equation. Diffusivity in gases,	
	liquids and solids. Steady, diffusion. Pseudo-steady diffusion.	
	Diffusion through porous solids. Convective mass transfer- Mass	
	transfer in fluid at solid-fluid interface. Mass transfer between two	
	fluids. Mass transfer v/s chemical control, enhancement of process	
	rates. Applications in metallurgical system	

Unit2	Definition and classification of fluids. Viscosity, Newtonian and non- Newtonian fluids. Viscous and non-viscous fluids. General features of fluid flow. Laminar and turbulent flow, Newton's law of viscosity, Pascal's law	8 hours
Unit3	Differential mass balance (continuity equation). Differential momentum balance (equation of motion). Navier Stokes Equation. Application of Differential Balance Equation. Overall mass balance and momentum balance. Euler's equation and its integration to obtain Bernoulli's equation. Bernoulli's Equation, Applications of Bernoulli's Equation, Flow through porous media.	12 hours
Unit4	 Modes of heat transfer. Conduction of heat through solid. Steady and unsteady state. Fourier law of heat conduction. General equation of heat conduction in Cartesian co-ordinate, spherical and cylindrical systems. Convective heat transfer. Free and forced convection. Application dimensional analysis of effective boundary layer. Aspects of Radiative Heat Transfer. Reflection, absorption and transmission of radiation. Black body radiation. Planck's Law. Wein's distribution Law. Heat transfer between two bodies by radiation. Lambert's Law. 	10 hours

3. Transport Phenomena Lab (List of Experiments)

Experiment No	Title
1	To study about various fluid properties and fluid flows.
2	To determine Reynold's number for fluid flow
3	Measurement of pressure difference using manometers
4	To verify Bernoulli's theorem.
5	To apply Bernoulli's equation to Venturimeter
6	To apply Bernoulli's equation to Orificemeter

7	To study the fundamentals of heat transfer
8	To determine thermal conductivity of insulating powder using sphere in sphere method.
9	To measure overall heat transfer coefficient for given composite wall with help of composite wall apparatus.
10	To determine temperature distribution and the effectiveness of fin.
11	To determine the surface heat transfer coefficient for a vertical tube losing heat by natural convection.
12	To determine convective heat transfer coefficient in force convection
13	To determine Stefan-Boltzmann constant
14	To determine emissivity for the given surface
15	Study of mass transfer

4. Text Books

- 1) Rate Processes in Metallurgy -A. K. Mohanty (2009)
- 2) Principles of Extractive Metallurgy -A. Ghosh and H. S. Ray (2006)
- 3) Elements of Heat and Mass Transfer -Prof. R. C. Patel (1963)
- 4) Fundamentals of Heat and Mass Transfer -Inpropera and Dewitt (1986)
- 5) Rate Phenomena in Process Metallurgy -J. H. Szekely and N. J. Themelis(1971)

5. Reference Books

- 1) Fundamentals of Momentum, Heat and Mass Transfer -J. R. Welty, C. E. Wicks (Pub.-Wilson Wiley) (2008)
- 2) Chemical Engineering -J. M. Coulson and J. F. Richardson (Pub.- Mc Hill ELBS) (1971)
- 3) Engineering in Process Metallurgy -RLL Guthrie (Pub.- Oxford).(1989)
- 4) Heat Transfer -Yunus Cengel (2003)

6. Digital Learning Resources

http://nptel.ac.in/courses/112101097/

http://nptel.ac.in/courses/112105171/

7. Question Paper Pattern for End Sem Exam

	Subject: Metallurgical Thermodynamics								
Program: B. Tech Metallurgical EngineeringSubject Code: MT0404Semester: IV									
Teaching Scheme Examination Evaluation Scheme									
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total	
3	2	0	4	60	0	40	0	100	

1. Course Outcomes

After completion of this course students will be able to gain knowledge about following

- Student can get the knowledge about the basic concept of system, properties of system and thermodynamics
- Students can analyze and understand all the laws of thermodynamics.
- They can demonstrate the application of various factors & mathematical equations governing the thermodynamics in the system
- They will able to solve different numerical pertaining to all three laws of thermodynamics for different systems
- They can demonstrate the phenomena of Ellingham diagram and its importance pertaining to metal oxides.
- They can understand thermodynamics of solutions ideal & non ideal solution
- They can describe basis of phase rule & its application and various equilibrium using thermodynamics and correlation for binary alloy systems.

2. Contents

		Allotted hours
Unit1	Importance of thermodynamics, Definition of thermodynamic terms, Concept of system, states and equilibrium, Types of system,	8 hours
	Extensive and intensive properties, Homogeneous and heterogeneous systems, Quasistatic process, Zeroth law of thermodynamics. First law of thermodynamics, Internal energy, Heat	
	capacity, Specific heat and latent heat, Enthalpy, Isothermal and adiabatic processes.	

Unit2	State properties, Heat of reaction, Heat of formation, Standard heats, Heat of transition, Hess's law, Kirchoff's law equation. Second law of thermodynamics, Entropy of irreversible processes, Auxiliary functions, combined statements of 1 st and 2 nd laws, Maxwell's relations, Third law of thermodynamics, Temperature dependence of entropy, Statistical interpretation of entropy, Consequences of third law,	10 hours
	Nernst heat theorem	
Unit3	Concept of fugacity, activity and mole fraction, Activities in concentrated solution, Activity, Gas phase Reactions (H ₂ O- H ₂ and CO ₂ –CO mixtures), Activity in industrial liquid metallic solution, Equilibrium constant, Gibb's-Helmholtz equation. Van't-Hoff equation, Clausius – Clapeyron equation, Reactions involving solid and gases, Thermodynamics of solutions, Ideal solution, Raoult's law, Henry's law, Non-ideal solution Gibb's-Duhem equation, Partial molar properties of mixing,	10 hours
Unit4	Excess functions, Concept of 1 wt% standard state and Interaction coefficient, Regular solutions, Sievert's law-residual gases in steel, Phase relations and phase rule-its applications, Free energy- composition and temperature-composition diagrams for binary alloy systems and their correlation, determination of liquidus, solidus and solvus lines, Effect of pressure on phase transformation and phase equilibrium, Ellingham diagram in detail for metal oxides.	10 hours

3. Text Books

- 1) Introduction to Metallurgical Thermodynamics, R. H. Tupkary, T. U. Publishers, (1995).
- 2) Introduction to Materials and Metallurgical Thermodynamics, A. Ghosh, PHI, (2009).
- 3) Metallurgical Thermodynamics Kinetics & Numericals by Dr. S.K.Dutta, (2011), S. Chand Publications.

4. Reference Books

- 1) Problems in Metallurgical Thermodynamics and Kinetics, G. S. Upadhyaya and R. K. Dube, Pergamon Press, (1977).
- 2) Physical Chemistry of Metals, L. S. Darken and R. W. Gurry, McGraw Hill (1953).

5. Digital Learning Resources

https://www.khanacademy.org/science/physics/thermodynamics/v/thermodynamics--part-1 http://nptel.ac.in/courses/113106031/ http://chemwiki.ucdavis.edu/Physical_Chemistry/Thermodynamics/Thermodynamic_Cycles/ Hess%27s_Law

6. Question Paper Pattern for End Sem Exam

	Subject: Energy Economy & Waste Management								
Program: B. Tech Metallurgical EngineeringSubject Code: MT0405Semester: IV									
Teaching Scheme Examination Evaluation Scheme									
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total	
3	0	0	3	60	0	40	0	100	

1. Course outcome:

On completion of the course students will be able to:

- Understand economic and ability to apply economic and financial evaluation of energy projects.
- Learning the basics of cost calculation for electricity and heat production from CHP and power plants
- Design processes for the treatment of waste water and the sludges that arise from them;
- Discuss the operational aspects of handling hazardous wastes; and
- Describe methods for the recycling and minimization of solid wastes.

2. Contents

		Allotted hours
Unit 1	Introduction Energy basics; Energy defined, Alternative	8 hours
	classifications of Energy, India and world energy consumption and	
	trade. Energy and multidimensional interactions, Introduction to	
	energy system, Energy balance, Analysis of energy balance	
	information, Energy demand, Management of Energy Demand,	
	Economy of energy supply.	
Unit 2	Fossil Fuel Markets Coal, oil, natural gas.	10 hours
	Economics of Non-Renewable resource supply.	
	Financing Energy Development Energy resources and economic	
	rent (economic rent, leasing and taxation of energy resources,	
	government revenues), Allocation of resources over time and	
	financing energy development (discounting, "levelized" costs of	
	renewable resources, Cost Benefit Analysis, Laffer Curve,	
	Interrelationship between energy system and LCOE, depletion of non-	
	renewable resources), GDP, GNP, Energy futures.	

Unit 3	Solid Waste Management & Disposal	10 hours
	Introduction to solid waste management, the disposal decades, the	
	nature of the problem, Methods of waste disposal (Treatment/disposal	
	Technologies): dumping, sanitary landfills mechanical-biological	
	treatment, incineration, anaerobic digestion, composting; recycling of	
	plastics, batteries.	
Unit 4	Liquid Waste Management Introduction to liquid waste	10 hours
	management, types and sources of liquid waste, Management of	
	liquid waste: Human waste management, sullage management,	
	Industrial waste management, Collection, storage, and treatment of	
	liquid waste: septic tanks, anaerobic biogas reactor, and Centralized	
	wastewater treatment systems.	

3. Text Books:

- 1) Energy Economics: Concepts, Issues, Markets and Governance by Subhes C. Bhattacharyya, 2011.
- 2) Energy Economics: A Modern Introduction by Ferdinand E. Banks, 2003.
- 3) Waste Management and Resource Recovery By Charles R. Rhyner, Leander J. Schwartz, Robert B. Wenger, Mary G. Kohrell, 2000.

4. Reference Books:

- 1) Environmental science by Eldon Enger, Bradley Smith. McGraw Hill, 2000.
- 2) Solid/liquid separation: waste management and productivity enhancement: by H. S. Muralidhara, 1989.
- 3) International Handbook on the Economics of Energy edited by Lester C. Hunt, Joanne Evans, 2009 Edition.
- 4) Energy Economics: Growth, Resources, and Policies by Richard John Eden, 1982.

5. Digital Learning Resources

http://www.youtube.com/watch?v=Ie8VxbIM1Kc http://www.youtube.com/watch?v=PaBNI6Q6Sss http://www.cyen.org/innovaeditor/assets/Solid%20waste%20management.pdf http://www.tn.gov.in/dtp/liquid_wm.htm https://www.escondido.org/Data/Sites/1/media/pdfs/Utilities/BMPLiquidWasteManagem ent.pdf

6. Question Paper for end semester Examination:

	Subject: Cyber Security and Intellectual Property Rights									
Program: B	Program: B. Tech Metallurgical Engineering				ode: CE0407		Semester: IV			
	Teaching	Scheme		Ex	amination Eva	luation Schem	ie			
				University	University	Continuous	Continuous	Total		
				Theory	Practical	Internal	Internal			
				Examination	Examination	Evaluation	Evaluation			
						(CIE)-	(CIE)-			
Lecture	Tutorial	Practical	Credits			Theory	Practical			
01	00	00	00	60	00	40	00	100		

Learning Objectives

- 1. To facilitate understand & critical understanding about Cybercrimes, Ethical Hacking, cyber security, forensics and cyber laws
- 2. Exploration of the legal and policy developments in various countries for cyber space
- 3. To provide in-depth knowledge of Information Technology Act, 2000 including Information Technology Amendment Act, 2008
- 4. Understanding e-Governance, Electronic Contracts, e-Banking & Secure electronic records

UNIT-I

Introduction:

Information Security Overview, Cyber security, Cyber security objectives and policies, Differences between Information Security & Cyber security, Cyber security Principles, Introduction of Cyber crime, Classifications of Cybercrimes.

UNIT-II

Security Threats and vulnerabilities:

Overview of Security threats, Hacking Techniques, Password Cracking, Insecure Network connections, Malicious Code, Programming Bugs, Cyber crime and Cyber terrorism, Information Warfare and Surveillance. Applicationsecurity(Database,E-mailandInternet).

UNIT-III

Overview of Security Management:

Overview of Security Management, Security Policy, Security Procedures and Guidelines, Risk Management, Security Laws, System Security (Desktop, email,web), Intrusion Detection Systems, SecurityTechnology-FirewallandVPNs, Backup SecurityMeasures.

Approved Vide Agenda Item No. 03 of Minutes of Meeting of Academic Council held on 11 July 17

[3 hours]

[3 hours]

[3 hours]

UNIT-IV Cyber law- Intellectual property right:

Introduction, Objectives of Intellectual property law, Types of IPR, Advantages of IPR, IPR in India, Offences and Penalties.

Text Books

 "Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Nina Godbole, SunitBelapur, Wiley India Publications, April, 2011

Reference Books

- 1. CharlesP.Pfleeger,ShariLawerancePfleeger,"AnalysingComputerSecurity", PearsonEducationIndia.
- 2. .K.Pachghare, "CryptographyandinformationSecurity", PHI LearningPrivateLimited, DelhiIndia.
- 3. Dr.SuryaPrakashTripathi,RitendraGoyal,PraveenkumarShukla,"Introductionto InformationSecurityand CyberLaw"WilleyDreamtechPress.
- 4. Schou, Shoemaker, ``InformationAssurancefor the Enterprise'', TataMcGrawHill.
- 5. CHANDER, HARISH, "CyberLawsAndIt Protection", PHILearningPrivateLimited, Delhi, India

Online courses:

- https://www.youtube.com/watch?v=yjmQurhbVas
- <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-858-computer-systems-security-fall-2014/video-lectures/</u>
- https://www.youtube.com/watch?v=mut5Z9Ajva4
- <u>https://www.youtube.com/watch?v=MI5KxHookDs</u>
- <u>https://www.youtube.com/playlist?list=PLRkCJvWSrxbt-xBX5cjzTr4pE0SZ-pIOf</u>

[3 hours]

5TH SEMESTER

В-Т	B-TECH METALLURGICAL ENGINEERING, SEMESTER –V TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017												
			TEACHING SCHEME				EXAMINATION SCHEME				ME		
SR	CODE					STIC	JRS	T	HEOR	Υ	PRA	АСТ	
NO	CODE	SUBJECTS		т	Р	CREDITS	HOURS	CIE					TOTAL
				-				MID	IE	ESE	CIE	ESE	
1	MT0501	Heat Treatment Principles and Practices	03	00	02	04	05	30	10	60	40	60	200
2	MT0502	Iron Making	04	00	02	05	06	30	10	60	40	60	200
3	MT0503	Foundry Technology	04	00	02	05	06	30	10	60	40	60	200
4	MT0504	Non Ferrous Extractive Metallurgy	03	02	00	04	05	30	10	60	00	00	100
5	MT0505	Plastic Deformation of Metals	03	02	00	04	05	30	10	60	00	00	100
6	MT0506	Surface Engineering	04	00	00	04	04	30	10	60	00	00	100
7	SH0507	Technical Communication and Soft Skills	01	00	00	00	01	00	00	00	00	00	00
		TOTAL	22	04	06	26	32	180	60	360	120	180	900

			Subject: H	eat Treatment P	rinciples and Prac	tices		
Program: B. Tech Metallurgical Engineering				Subject Co	ode: MT0501		Semester: V	
Teaching S	Teaching Scheme Examination Evaluation Scheme							
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
4	0	2	5	60	60	40	40	200

1. COURSE OUTCOMES :

- To make the students aware about the basic information processes.
- To impart the knowledge about the Different heat treatment processes and different
- The central point of this course is to provide a physical basis that links the structure of materials with their properties, focusing primarily on metals. With this understanding in hand, the concepts of alloy design and microstructural engineering are also discussed.

2. Course Content:

		Allotted hours
Unit	Principles of heat treatment of steels:	8 hours
1	Phase Transformation on heating, Forming of austenite, Kinetics of	
	formation of austenite, Nucleation sites in eutectoid steels, Austenitic	
	grain size, Grain growth, Determination of austenitic grain size,	
	Importance of austenitic grain size	
	TTT (Time Temperature Transformation) and CCT (Continuous	
	Cooling Transformation) diagrams:	
	Method of plotting, Types of TTT diagram, Critical cooling rate, Effect	
	of alloying elements on TTT diagram, Applications, Continuous	
	cooling transformation diagram, Limitations of Iron-Iron Carbide	
	Diagram, Effect of Alloying elements on CCT diagram.	
Unit	Pearlitic transformation: Mechanism of transformation, Kinetics of	10 hours
2	transformation, Hull-Mehl model of pearlitic transformation, Effect of	
	alloying elements on transformation, Interlameller spacing,	
	Bainitic transformation: Characteristics, Mechanism of	
	transformation, Bainitic structure.	
	Martensitic transformation:	

	Diffusionless transformation, Mechanism of transformation, Kinetics of transformation, M_s - M_f temperatures, Athermal and isothermal martensites, Effect of applied stress on transformation, Habit planes, Bain distortion model / crystallographic theory of martensitic transformation, Tempered Martensite, Retained austenite, Martensitic transformation in non-ferrous systems such as Fe-Ni and Cu-Al systems.	
T T •/	THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	10 h area
Unit 3	 Heat treatment processes: Stress relieving, Annealing – full annealing, partial annealing, bright annealing, diffusion annealing, recrystallization annealing, Spheroidizing, Normalizing, Hardening and Tempering, Hardening of typical steels, cast irons and non-ferrous alloys. Surface hardening of metals: Principles involved in induction and flame hardening methods and application of selective hardening, Laser hardening, Case carburizing (solid, liquid and gaseous), Cyaniding, Carbonitriding, Nitriding, Plasma nitriding etc., Depth of penetration - its measurement and relation with time and temperature, Hardening & Hardenability of steels. 	10 hours
TT \$4		10 hours
Unit 4	Special methods of heat treatment: Austempering, Martempering, Ausforming, Patenting, Sub-zero treatment etc., Thermo Mechanical treatments. Heat treatment of carbon steels, alloy steels, tools and dies steels, stainless steels (with reference to carbide precipitation and sigma phase formation) and cast irons – specific examples, Heat treatment of Aluminum alloys, titanium alloys and copper alloys, Concept of age-hardening. Design for heat treatment, Heat treatment furnaces- their temperature and atmosphere control, Defects in heat treated parts, Causes for the defects in heat- treated parts and remedies.	10 110013

Experiment No	Title
1	Annealing of Medium / High carbon steels
2	Characterization of annealed steel
3	Normalizing of Medium / High carbon steels
4	Characterization of normalized steel
5	Spheroidizing of High carbon steel
6	Characterization of spheroidized steel
7	Hardening of medium/ high carbon steels
8	Characterization of hardened steel
9	Tempering of medium/ high carbon steels
10	Characterization of tempered steel
11	To examine the effect of quenching media on hardening of steel
12	To measure the hardenability of steel using Jominy End-Quench test
13	To study the case hardening processes
14	Carburizing of low carbon steels
15	Case depth measurement and characterization of carburized steels

3. Heat Treatment of Alloys Lab (List of Experiments)

3. Text Book:

- 1) Heat Treatment (Principles and Techniques) by T. V. Rajan, C. P. Sharma and A. Sharma, PHI
- 2) Physical Metallurgy for Engineers by D. S. Clark and W. R. Varney, East-West

4. Reference Books

- 1) Introduction to Physical Metallurgy by S. H. Avner, Tata Mc-Graw Hill
- 2) Engineering Physical Metallurgy and Heat Treatment by Yu. M. Lakhtin, MIR Publishers
- 3) Material Science and Metallurgy for Engineers by V D Kodgire and S V Kodgire, Everest Publishing House
- 4) Heat Treatment of Metals by Vijendra Singh
- 5) Physical Metallurgy (Principles and Practice) by V. Raghvan, PHI
- 6) Heat Treatment of Metals by Zakharov
- 7) ASM Handbook on Heat Treating, Vol. 4
- 8) Handbook of Heat Treatment by K. H. Prabhudev, Tata Mc-Graw Hill

5. Digital Learning Resources

http://nptel.ac.in/courses/113105024/

6. Question Paper Pattern for End Sem Exam

As per Appendix A

	Subject: Iron Making									
Program: B. Tech Metallurgical Engineering				Subject C	Code: MT0502		Semester: V			
Teaching Scheme				Examination	Evaluation Scheme	2				
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total		
4	0	2	5	60	60	40	40	200		

1. Course Outcomes:

- Know the overall idea of how Irons are produced ,about the history of Iron making and availability of raw materials for iron production various techniques of raw material preparation for charging in iron making furnace, construction and operation of iron making furnace and reactions occurring in the furnace , reaction mechanism inside the blast furnace.
- The 'Metallurgist' will be able to acquire M Tech /ME / MSc(engg) & PhD degrees in order to enhance, sustain and nurture his/her professional career by : Joining any national institutes like IIT, NIT, IISc in various specialized fields of metallurgical & materials engineering such as Industrial metallurgy, Steel technology.
- For a 'Metallurgist', there are a lot of job opportunities with tremendous growth in almost all types of industrial sectors in the present scenario. These jobs include different functions such as Managerial role, Material Scientist, Techno-commercial Manager, Quality control & assurance, Marketing & Sales, Project & Planning.
- Services such as ONGC, IOCL, SAIL, GAIL, ESSAR, ISPAT, laboratories of national and inter-national repute such as NASA, BARC, BARC, CSIR, NML, DRDO, DMRL, IPR, etc.
- There is plenty of scope and feasibility for a 'Metallurgist' to go for self employment by setting up an 'Enterprise/ Industrial Unit in Setup a small foundry of ferrous and non-ferrous metals.

2. Contents

		Allotted hours
Unit1	General: History of iron making. Occurrence, distribution and	8 hours
	evaluation of raw materials (iron ore, coal and flux) for iron making.	
	Burden materials and burden preparation: Burden preparation,	
	Burden qualities. Agglomeration- Sintering-process, variables and	

	machines. Pelletization process, Theory of bonding. Mechanism of	
	ball formation, Disc and drum pelletizer, Induration of pellets, cold	
	bonding technique and testing of pellets.	
	boliding teeninque and testing of penets.	
Unit2	Blast Furnace (B.F.) Constructional features: Profile, Refractories,	10 hours
	Accessories, Charging mechanism, Bell and bell-less charging systems. B.F. – Reactions: Physico-chemical principles of blast furnace. Blast furnace reactions. Reaction in stack, tuyere zone, bosh and hearth. Thermodynamics equilibria, Direct and indirect reduction. Kinetics of iron-oxide reduction, Slag-metal reactions, Desiliconization, Desulphurization.	
Unit3	B.F. – Operations: Operational steps, Blast furnace irregularities and remedial measures, Blast furnace gas, properties, cleaning and utilization.	10 hours
Unit4	Alternative Methods of Iron Making: Reduction smelting, Direct reduction processes, Fluidized bed process, Electro thermal process and mini blast furnace.	10 hours

3. Iron Making Lab (List of Experiments)

Experiment No	Title
1	Identification of raw material for iron making
2	Bulk density Measurement
3	Determination of Angle of Repose
4	Sintering of iron ore fines
5	Pelletization of iron ore fines
6	Induration behavior of pellets
7	Box compression test of hardened or indurated pellets
8	Tumbling/Drum test of green and indurated pellets
9	Shatter Test of agglomerated products
10	Drop Test of agglomerated products
11	Study of ISP layout
12	Charge calculations for raw materials in Blast Furnace

13	Study of different parts of Blast Furnace
14	Chemical analysis of Iron based products
15	Study of Briquetting Process

4. Text Book(s)

- 1) Introduction to Modern Iron Making, R. H. Tupkary, (Khanna Pub.)
- 2) Iron Making and Steel Making: Theory and Practice, A. Ghosh and A. Chatterjee, (Prentice Hall)
- 3) Principles of Blast Furnace Iron Making, A. K. Biswas, (SBA Pub.)

5. Reference Books

- 1) Making, Shaping and Treating of Steels, A. W. Cramb (Editor) (11th Edition, Vol. 1 & 2, AISE, Pittsburg)
- 2) Blast Furnace: Theory and Practice, J. G. Peacey and W. G. Davenport, (Pergamon Press, Oxford)
- 3) Blast Furnace Iron Making, J. J. Gupta and Amit Chatterjee, (SBA Pub.)

6. Digital Learning Resources

www.steeluniversity.org.in http://nptel.ac.in/

7. Question Paper Pattern for End Sem Exam:

			S	ubject: Foundry	Technology			
Program: B. Tech Metallurgical Engineering				Subject Co	Subject Code: MT0503 Sem			
Teaching S	Teaching Scheme Examination Evaluation Scheme							
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
4	0	2	5	60	60	40	40	200

1. Course Outcomes :

- Knowledge about the fundamentals of the casting, basic terminology related to casting process.
- Students will be aware about the alternative method for the manufacturing of component for engineering applications.
- Get knowledge about how to manufacture the intricate casting what should be the process parameter, design of pattern, mould, etc.
- Students will be aware about the melting practice of different cast alloy
- Get knowledge to overcome defects generated during casting

2. Contents

		Allotted hours
Unit	General: Introduction to metal casting and foundry industry in	8 hours
1	 modern industrial scenario. Advantages and limitations of casting methods. Classification of foundries. Different sections in a foundry and their functions. Important cast metals and alloys-their composition, properties and uses. Patternmaking: Patterns. Types. Pattern making materials and their selection, Color code, Pattern allowances, Core-boxes and their types. 	
T T •4		10 h a same
Unit 2	 Moulding and Core-making Materials: Ingredients of common type of moulding and core-making sands, their properties and behavior, testing of sands and clay. Moulding Processes: Classification, Brief description of processes such as green sand, dry sand, loam, floor, Pit and machine molding. No-bake molding process. CO2-Silicate process 	10 hours
	100 bake molenng process. CO2 Sineate process	

Unit	Casting Processes: Shell molding and casting process, Investment	10 hours
3	casting process, Permanent molding process. Gravity and Pressure	
	Die-casting, Centrifugal casting process. Low Pressure Die-casting	
	(LDPC) process.	
	Melting: Melting of cast iron, Constructional features of Cupola,	
	Principles and operation of Cupola furnace. Advances in cupola	
	melting operation, Melting of aluminum and Copper-based alloys.	
	Furnaces used, Melt-treatments such as degassing, Grain refining	
	and modification.	
Unit	Gating System: Elements of gating system. Classification. Gating	
4	design considerations, Gating ratio. Gating practice for ferrous and	
	non-ferrous alloys, Pouring equipments.	
	Risering System: Risering practice, Functions of riser, Directional	
	and progressive solidification. Centerline feeding resistance. Riser	
	efficiency. Riser design considerations. Risering curves. Cain's,	
	N.R.L. and Modulus methods, Feeding distance and feeding aids,	
	Blind and atmospheric risers	
	Quality Control in Foundry: Casting defects, their causes and	
	remedies. Shop floor quality control tests such as composition	
	control, Wedge test, fluidity, temperature measurement etc.	

3. Foundry Technology Lab (List of Experiments)

Experiment No	Title			
1	Introduction to foundry laboratory.			
2	To detrmine AFS fineness number and distribution coefficient of agiven sand sample			
3	To demonstrate the working of sand muller			
4	To determine the clay content of given sand sample			
5	To prepare standard samples under identical condition for checking important physical properties of foundry sand			
6	To determine compression strength of foundry sand			
7	To determine permeability number of green sand, core sand and raw sand			
8	To find out the green mould hardness of the sand mould			
9	To determine shatter index of the sand sample.			
10	To determine moisture content of the prepared sand			

11	To prepare core sand
12	To findout the hardness of dried cores made out of core sands
13	To perform peelback test on core sand
14	To perform hot distortion and tensile tests on core sand
15	To study the aluminum melting and casting

1. Text Book(s)

- 1) Principles of Metal Casting, R. W. Heine, C. R. Loper and P. C. Rosenthal, (Tata McGraw Hill)
- 2) Principles of Foundry Technology, P. L. Jain, (Tata McGraw Hill).

4. Reference Books

- 1) Fundamentals of Metal Casting Technology, P. C. Mukherjee, (Oxford & IBH)
- 2) Foundry Technology, P. R. Beeley
- 3) Foundry Engineering, H. F. Taylor, M. C. Flemings, (Wiley Eastern)
- 4) Foundry Technology, D. Kumar & S. K. Jain, (CBS Pub.)

5. Digital Learning Resources

http://nptel.ac.in/

6. Question Paper Pattern for End Sem Exam :

			Subject:	Non F	errous Ext	ractive Metallur	gy		
Program: B	Program: B. Tech Metallurgical Engineering Subject Code: MT0504 Semester: V								
Teaching S	Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	Unive Theor Exam	e e	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	2	0	4		60	0	40	0	100

1. Course Outcomes

- To make the students aware about basics of Non Ferrous metals and its extraction processes
- To impart the knowledge about the basic steps followed in Extraction and its importance After extraction of pure metal from their respective ores
- To develop the knowledge regarding the auxiliary operation and the advancement in various extractive process.

2. Contents

		Allotted hours
Unit 1	General:	8 hours
	World resources of Non-ferrous metals and their occurrence. Present	
	and future position of non-ferrous metallurgical industry in India-	
	resources, production and consumption.	
	Indian scenario of non-ferrous ores and mineral deposits. Production	
	plants for non-ferrous metals such as copper, zinc, lead, tin,	
	Aluminum, nickel, magnesium, titanium, etc.	
	Basics of Pyrometallurgy, Hydrometallurgy and electrometallurgy	

Unit 2	Aluminum:	10 hours
	Occurrence of Bauxite. Bayer's process for production of alumina.	
	Alternatives to Bayer's process. Hall-Heroult process-conventional	
	and new materials for construction of Aluminum reduction cell, nature	
	of electrolyte. Electrolysis of alumina with emphasis on physico-	
	chemical principles and secondary-reactions, factors affecting current	
	efficiency. Alternatives to Hall-Heroult process. Refining of	
	Aluminum.	
	Aummum.	
	Copper:	
	Occurrence of copper ores. Roasting. Matte-smelting, Converting and	
	Refining process as applied to copper production and their physico-	
	chemical aspects. Single step and multistep continuous processes.	
	Hydrometallurgical process for production of primary copper.	
	Recovery of copper from copper slag.	
Unit 3	Nickel:	10 hours
	Occurrence of nickel ores, Pyrometallurgical and Hydrometallurgical	
	processes for nickel production and refining.	
	Lead and Zinc:	
	Occurrence of lead and zinc ores, Pyrometallurgical and	
	Hydrometallurgical processes for lead and zinc production and their	
	physio-chemical aspects, Refining of lead and zinc, Recovery of	
	byproducts.	
	Tin:	
	Occurrence of tin, various methods of extraction of tin from its ores	
	and other sources. Uses of tin.	
Unit 4	Gold and Silver:	10 hours
	Occurrence of gold and silver. Various methods for production of gold	
	and silver from their ores and other sources.	
	Recovery of gold, silver and platinum from secondary sources such as	
	Copper Anode Mud, Red Mud, Zinc dross and electrolytic solutions.	
	Magnesium:	
	Occurrence of magnesium, Methods of production of magnesium	
	oxide and magnesium chloride, Pyrometallurgical extraction of	
	magnesium, Electrolytic extraction and refining of magnesium.	
	Titanium	

Occurrence of titanium, Extraction, Production, recovery, properties	
and application.	

3. Text Book(s)

1) Extraction of nonferrous metals, H.S. Ray, R. Sridhar and K.P. Abraham Affiliated East West Press Pvt Ltd., New Delhi (2007).

4. Reference Books

- 1) W.H. Dennis, Extractive Metallurgy, Philosophical Library, New York (1965)
- 2) F. Habashi, Principles of Extractive Metallurgy, Vol.1, Gordon and Breach, New York (1969).
- 3) T. Rosenqvist, Principles of Extractive Metallurgy, McGraw Hill, New York (1983)
- 4) J.L. Bray, Nonferrous production metallurgy, Wiley, New York(1954)
- 5) R.D. Pehlke, Unit processed in extractive metallurgy, Elsevier, Amsterdam (1082)
- 6) H.S. Ray and A. Ghosh, Principles of extractive metallurgy, Wiley Eastern Ltd., New Delhi (1991)
- 7) Introduction to melts molten, salts and slags, Allied Pub. Pvt. Ltd., New Delhi (2006)
- 8) H.S. Ray, B.P Singh and Sarama Bhattacharjee, Energy in minerals and metallurgical processes, Allied Publishers Ltd, New Delhi (2005)

5. Digital Learning Resources

http://nptel.ac.in/courses/113105021/

6. QUESTION Paper Pattern for End Sem Exam:

			Subje	ct: Plastic I	Deform	nation of Metal			
Program: B	. Tech Metal	lurgical Eng	ineering	Subje	ct Cod	le: MT0505		Semester: V	
Teaching S	cheme			Examinati	ion Ev	aluation Scheme	<u>è</u>		
Lecture	Tutorial	Practical	Credits	University Theory Examination		University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	2	0	4	60		0	40	0	100

1. Course Outcomes

After completion of this course students will be able to gain knowledge about following

- To provide knowledge about the basic concept crystals their structures and their defects that is point , line, volume and surface defects
- To teach them basics about dislocations and how dislocations help in improving properties.
- To teach them various strengthening mechanism of metals.
- To solve different numerical pertaining to resolved shear stress and hall petch equation.
- To help them understand fracture mechanics like ductile and brittle fracture & give them knowledge about fracture mechanics.
- To introduce them about testing and specially creep and fatigue testing in detail.
- To solve practical example on the same testing and demonstrate them.
- To make them understand various heat treatments and their basics.

2. Contents

		Allotted hours
Unit 1	Crystal Imperfections, Point Defects, Line Defects & Surface Defects,	8 hours
	Dislocation and its types, Slip Phenomena, Slip Systems. Theoretical	
	strength of a perfect Crystal, Slip by dislocation movement concept of	
	critical resolved shear stress, Climb and its types, Twinning as a mode	
	of deformation, Burgers vector and the dislocation loop, Stress fields	
	and energies of dislocations, Jogs and Kinks.	

Unit 2	Dislocation:	10 hours
	Dislocation in F.C.C (including formation of stacking fault.) B.C.C	
	and H.C.P., Forces. Multiplication of dislocations, Techniques to	
	observe dislocation, Dislocation point defects interactions, Intersection	
	of Dislocations, Dislocations pile up.	
	Deformation of single and polycrystalline materials, Grain boundaries.	
	Low-angle boundaries, High Angle Grain Boundaries Surface tension	
	of the grain boundary, Strengthening from grain boundaries, Hall-	
	petch equation, Yield point phenomenon.	
Unit 3	Strain- hardening of polycrystalline metals, Strain hardening of single	10 hours
	crystals, Relation between single and polycrystalline stress-strain	
	curve, Solid – Solution hardening. Strengthening due to second phase	
	particles, Strain – ageing behavior, Annealing of cold-worked metals,	
	Recovery, Recrystallization and grain growth.	
	All types of tests, Modes of Failure, Theory of ductile-brittle transition	
	temperature (DBTT).	
Unit 4	Types of fracture in metals. Theoretical cohesive strength of metals.	10 hours
	Griffith theory of brittle fracture, Elementary concept of fracture	
	mechanics, Fatigue test. Theory of fatigue. Effect of metallurgical	
	variables and temperature. Creep test, Creep curve. Stress-rupture test,	
	Creep mechanisms. High temperature alloys. Effect of some	
	metallurgical variables. Presentation of engineering creep data.	

3. Text Books

- 1) Mechanical Metallurgy G.E.Dieter, M.C. Graw-Hill (1976).
- 2) Physical Metallurgy Principles- R.E. Reed-Hill, Divan-Nostrand Company (1964).
- Deformation and Fracture Mechanics of Engineering Materials Richard W. Hortzberg, John Wiley & Sons (1996).
- 4) Structure and Properties of Materials, Vol.III, Mechanical Behaviour, John Wulff, H.W. Hayde, W.I.Moffatt, Wiley Eastern Private Ltd (1988).

4. Reference Books

- 1) Mechanical Behaviour of Materials T. H. Courtney (2005).
- 2) Testing of Metallic Materials -A. V. K. Suryanarayan (Pub.-PHI, New Delhi), (1976).

5. Digital Learning Resources

http://www.youtube.com/watch?v=BeZLOyqwPgQ

http://www.youtube.com/watch?v=hJPK_40NO2M

http://www.learnerstv.com/video/Free-video-Lecture-23057-engineering.htm http://www.learnerstv.com/video/Free-video-Lecture-23058-engineering.htm

6. Question Paper Pattern for End SemExam:

Subject: Surface Engineering								
Program: B.	Program: B. Tech Metallurgical Engineering Subject Code: MT0506 Semester: V							
Teaching S	Teaching Scheme Examination Evaluation Scheme							
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
4	0	0	4	60	0	40	0	100

1. Course Outcomes :

- To understand the concept and basis of surface engineering.
- To understand the various methods of surface modification techniques.
- Understanding of the various modification phenomena.
- From application point of view students can co-relate various techniques with desired properties and applications.
- It will help students to understand various advanced machineries and their working principles like plasma, laser, and ion beam, etc.

2. Contents

		Allotted hours
Unit1	Scope of surface engineering in metals, ceramics, polymers and	8 hours
	composites, Surface Preparation methods such as Chemical,	
	Electrochemical, Mechanical- Sand Blasting, Shot peening, Shot	
	blasting, Hydroblasting, Vapor Phase Degreasing etc., Properties of	
	Various Coating, Coating Methods.	
Unit2	Chromating, Phosphating, Anodizing, Thermochemical processes,	10 hours
	industrial practice, economy and energy considerations. Electrolytic	
	and Electroless plating of important metals and alloys	
Unit3	Surface pretreatments, Hot Dipping, galvanizing, testing/evaluation	10 hours
	of surface properties.	
	Coating from Vapour Phase	
	PVD, CVD, Various Methods used, mechanisms, important	
	reactions involved and applications.	
Unit4	Sputtering, Plasma Spray & Ion Implantation Methods, mechanisms	10 hours
	& applications. Surface modification by directed energy beams like	

io	n, electron and laser beams, novelty of composition and
m	icrostructures.
D	iffusion Coating: Various Techniques For Single And Multiple
E	lement Coating, High Temperature Coating- Carburising,
C	arbonitriding, Silicanizing, Chromizing, Aluminizing, Boronizing,
В	oronitriding.

3. Text Book(s)

- 1) J. R. Davis-Surface Engineering for Corrosion and Wear Resistance.
- 2) George J. Rudzki -Surface Finishing Systems. metal and non-metal
- 3) finishing handbook-guide, Metals Park : ASM, 1983
- 4) James A. Murphy- Surface Preparation and Finishes for Metal, McGraw-Hill, New York 1971

4. Reference Books

- 1) P. G. Sheasby and R. Pinner Surface treatment and finishing of
- 2) Aluminum and its alloy, Volume-2, 5th ed., ASM, Metals Park, 1987
- K. E. Thelning -Steel and its Heat Treatment Bofors Handbook, London Butterworths, 1975
- 4) Surface Engineering Hand Book, edited by Keith Austin, London
- 5) Kogan Page, 1998
- 6) ASM Handbook
- 7) Rajiv Mishra on Friction Stir Surfacing & Friction stir Processing

5. Digital Learning Resources:

www.nptel.ac.in

6. Question Paper Pattern for End Sem Exam:

	Subject: Technical Communication and Soft Skills								
Program: B	. Tech Meta	llurgical En	gineering	Subject Co	Subject Code: SH0507 Semest				
		~ .							
	Teaching	Scheme		Ex	amination Eva	luation Schem	ie		
				University	University	Continuous	Continuous	Total	
				Theory	Practical	Internal	Internal		
				Examination	Examination	Evaluation	Evaluation		
						(CIE)-	(CIE)-		
Lecture	Tutorial	Practical	Credits	Theory Practical					
1	0	0	0	60	00	40	00	100	

Course Objectives:

- 1. To enable students to interact with a degree of fluency and spontaneity that makes regular interaction with fluent English speakers quite possible without strain for either party.
- 2. To understand with ease virtually everything heard or read.
- 3. To express themselves spontaneously, very fluently and precisely, differentiating finer shades of meaning even in the most complex situations.
- 4. To understand sentences and frequently used expressions related to areas of most immediate relevance (e.g. very basic personal and family information, shopping, local geography, employment).
- 5. To communicate in simple and routine tasks requiring a simple and direct exchange of information on familiar and routine matters
- 6. To understand the main ideas of complex text on both concrete and abstract topics, including technical discussions in their field of specialization.

Course Content:

	Sr. No.	Content
Listening	1	Listening: Cloze test
_	Listening to Talks (BBC, TED) 1	
	3	Listening to Talks 2
		Phonetics: Sounds & Symbols & Accent Patterns
Speaking	4	
	5	Vocabulary Games: Intermediate Level
	6	Vocabulary Games: Intermediate Level
	7	Building Dialogues: Situational Conversation
	8	Role Play
	9	Group Discussion

Reading	10	How to Read effectively
	11	Reading to Remember : SQ3R

Writing	12	Grammar Intermediate: Sentence Transformation
	13	Common Errors in English
	14	Précis Writing
	15	Effective Paragraph Writing

6TH SEMESTER

B-T	ЕСН МЕТ	ALLURGICAL ENGINEERIN WITH E						IING	& EX	AMIN	JATI(ON SC	HEME
				TEACHING SCHEME				EXAMINATION SCHEME					
SR	CODE					CREDITS	HOURS	THEORY			PRA		
NO	CODE	SUBJECTS	L	т	Р			C	IE				TOTAL
				•	r			MID	IE	ESE	CIE	ESE	IOTAL
1	MT0601	Steel Making	04	02	00	05	06	30	10	60	00	00	100
2	MT0602	Electrometallurgy and Corrosion	04	00	02	05	06	30	10	60	40	60	200
3	MT0603	Powder Metallurgy	04	00	02	05	06	30	10	60	40	60	200
4	MT0604	Metal Forming	03	02	00	04	05	30	10	60	00	00	100
	MT0605	Material Characterization (EL – 1)						30	10	60	00	00	
5	MT0611	Computational Materials Science (EL – 1)	03	02	00	04	05						100
	MT0612	MOOC Course – 1 (EL – 1)											
	MT0606	Industrial Ceramics & Polymers (EL – 2)											
6	MT0607	Nano Technology (EL – 2)									00		100
	MT0608	Composite Materials (EL – 2)	04	00	00	04	04	30	10	60		00	100
	MT0609	Nuclear Metallurgy (EL – 2)											
	MT0610	Modelling of Metallurgical (EL – 2)											
7	7 SH0607 Advanced Technical Communication and Soft Skills			00	00	00	01	00	00	00	00	00	00
		TOTAL	23	06	04	27	33	180	60	360	80	120	800

	Subject: Steel Making								
Program: B.	Program: B. Tech Metallurgical Engineering Subject Code: MT0601 Semester: VI								
Teaching S	Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	The	versity ory mination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
4	2	0	5		60	0	40	0	100

1. Course Outcomes:

- Know the overall idea of how steels are produced ,about the history of steel making and availability of raw materials for iron production various techniques of raw materials preparation for charging in steel making furnace, construction and operation of steel making furnace and reactions occurring in the furnace, reaction mechanism inside the blast furnace .
- The 'Metallurgist' will be able to acquire M Tech /ME / MSc(engg) & PhD degrees in order to enhance, sustain and nurture his/her professional career by :
- Joining any national institutes like IIT, NIT, IISc in various specialized fields of metallurgical & materials engineering such as Industrial metallurgy, Steel technology.
- For a 'Metallurgist', there are a lot of job opportunities with tremendous growth in almost all types of industrial sectors in the present scenario. These jobs include different functions such as Managerial role, Material Scientist, Techno-commercial Manager, Quality control & assurance, Marketing & Sales, Project & Planning.
- Services such as ONGC, IOCL, SAIL, GAIL, ESSAR, ISPAT, laboratories of national and inter-national repute such as NASA, BARC, BARC, CSIR, NML, DRDO, DMRL, IPR, etc.
- There is plenty of scope and feasibility for a 'Metallurgist' to go for self employment by setting up an 'Enterprise/ Industrial Unit in Setup a small foundry of ferrous and non-ferrous metals.

2. Contents

		Allotted hours
Unit1	General: Old Steel Making practices. Modern equipment and	8 hours
	practices. Integrated Steel Plants in India. Mini steel plants their	
	advantages and limitations – present scenario.	

Physical Chemistry of Steel Making: Thermodynamic and Kinetics of Refining Reactions, Carbon, Phosphorus, Sulphur and Silicon	
\mathbf{D}_{1}	
Reactions. Refining Slag and its Properties. Importance and	
Mechanism of decarburization. Reaction at Slag Metal interface.	
Init2 Basic Oxygen Steel Making: BOF practice, Equipment, Operation	10 hours
and Process, slag Metal reactions in B.O.F. Raw material and flux	
practices. Kaldo, OBM, LD-AC, Rotor process, Top and Bottom	
blowing processes. Oxygen Lance: Design, Construction and	
Operation. Top and Bottom Blown processes, Its advantages and	
disadvantages	
Electric Steel Making: Electric Arc Furnaces: Types and construction	
Sequence of operations. Various additions at Different Stages, Slag	
Control. UHP Arc Furnaces. Arc Furnace practices for Carbon and	
•	
Low Alloy Steels. Modern developments in ARC furnaces.	
Init3 Quality Steel Making: Introduction, Sources of Inclusions, Sulphur,	10 hours
Phosphorus, and Gases in Steels. Kinetics of Deoxidation of Molter	
Steel, Application of Ellingham Diagrams, Thermodynamics of	,
Reaction During Degassing of Liquid Steel, Fluid Flow and Mixing	
in Ladle, Kinetics and Mass Transfer, Ladle Injection Metallurgy,	
Desulphurization & Dephosphorization.	
Secondary Steel Making: Metallurgical Principles in Secondary Steel	
Making and Secondary Steel Making Processes. Ladle Furnaces	
(L.F.), Vacuum Systems and Vacuum treatment of Steel. Removal of	
Gases from steel. LF-VD processes and AOD, VOD, VAD	
techniques, R-H degassers. Ladle Stirring and its Advantages. ESR	
Principle And Technology. Deoxidation – Theory and practice	
Floatation's of deoxidation products, Modifications of Inclusions	
Injection Metallurgy	
	10 h av
Inclusions in Steel: Influence of Inclusions on Mechanical Properties	
of Steel, Inclusion, Identification and Cleanness Assessment, Origin	
of Non Metallic Inclusions, Inclusion Control Continuous Casting	
(C.C.) and Ingot Casting: 6 Hrs Ingot Casting: Types of Moulds,	
Advantages and Disadvantages. Ingot Defects and Remedies	
Continuous casting: C.C. machines with its various units and types.	
C.C. of Blooms, Slabs and Thin slabs EM S of Moulds. Reoxidation	
prevention methods during Steel Casting. Advantage of C.C.	

Environmental issues related to Steel Making, Heat Transfer &	T
Solidification Rate in Ingot Casting and Continuous Casting,	
Distinguishing Metallurgical Aspects of Continuous Casting of Steel.	

- 1) An Introduction to Steel Making Tupkary R.H. Khanna Publishers, Delhi.
- 2) Manufacture of Iron And Steel Vol I& II Bashforth- Asia Publishing House, Mumbai.

4. Reference Books

- Making, Shaping and Treating of Steels, A. W. Cramb (Editor) (11th Edition, Vol. 1 & 2, AISE, Pittsburg)
- 2) Introduction to Physical Chemistry of Steel Making: R.G.Ward, ELBS.
- 3) Steel Making; Kudrin V. Mir Publisher, Moscow, 1985

5. Digital Learning Resources

www.steeluniversity.org.in

6. Question Paper Pattern for End Sem Exam:

	Subject: Electrometallurgy & Corrosion								
Program: B. Tech Metallurgical Engineering				Subjec	Subject Code: MT0602 Semester:				
Teaching Scheme Examination Evaluation Scheme									
Lecture	Tutorial	Practical	Credits	University Theory Examination		University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
4	0	2	5	60		60	40	40	200

1. Course Outcomes:

- Understand the origin of the difference in electrical potential across an interface, in particular, a metal/electrolyte interface.
- Understand the relationship between rates of electrochemical reactions and the potential drop across interfaces.
- Understand the causes of and the mechanisms of various types of corrosion, including uniform corrosion, galvanic corrosion, crevice corrosion, pitting corrosion, intergranular corrosion, and various modes of environmentally assisted cracking.
- Be knowledgeable of the influence of a material's composition and microstructure on its corrosion performance.
- Be knowledgeable of the effect of an electrolyte's composition on the corrosion of metals.
- Be able to identify materials that will exhibit adequate corrosion resistance in a particular environment.
- Be able to propose economically viable remedial actions that will eliminate or reduce corrosion to a tolerable level.

2. Contents

		Allotted hours
Unit 1	Basics of Electrochemistry	8 hours
	Faradays' laws of electrolysis, current efficiency, current density,	
	electrode potentials, Thermodynamics and Kinetics of Electrode	
	Processes- Polarization Curves, Concept of Over-Potential, Kinetics	
	Of Passivity and Transpassivity, Nernst's Equation, Emf Series,	
	Evan's Corrosion Diagram, Galvanic Series. Pourbiax Diagram for	
	Metal Water System,	
	Applications and Limitations.	

Unit 2	Forms of Corrosion	10 hours
	The relevance of corrosion studies, forms of corrosion, Uniform Corrosion, Galvanic Corrosion, Crevice Corrosion, Pitting Corrosion, Intergranular Corrosion, Selective Leaching, Erosion	
	Corrosion, stress cracking corrosion, Hydrogen Damage	
	High Temperature Corrosion	
	High Temperature Corrosion in Different Atmosphere, Effect of	
	Doping, Alloying Elements, Coating Methods for High Temperature	
	Corrosion Protection, Pilling Bedworth Ratio and its	
	Applications.	
11	Communities Production	10 hours
Unit 3	Corrosion Protection	10 hours
	Principles of Protection, Selection of Suitable Design, Inhibition,	
	Coating Methods, Anodic protection and Cathodic protection	
	Electro deposition Classification and mechanism of electrodeposition processes.	
	Electroplating of copper, Nickel and Chromium. Principles of Alloy	
	plating and electroless plating, Anodising, Galvanizing.	
	pruting und electroress pruting, rinouising, our runzing.	
Unit 4	Factors affecting Corrosion	10 hours
	Environment affecting corrosion, effects of soil, chemicals, moisture	
	and atmospheric gases, temperature and velocity, metallurgical	
	factors	
	Corrosion Testing	
	Physical and Electrochemical Methods such as ASTM standard	
	methods A262 Practice A to E and their equivalents, Surface	
	Preparation, Exposure Technique, Corrosion Rate Measurements	
	Material Selection to Combat Corrosion	
	Specific Corrosion Applications Such as Marine Industry,	
	Petrochemical Industry, High Temperature Service, Chemical	
	Industry, Automobile, High Temperature & High Pressure corrosion	
	in Industries	

3. Electrometallurgy and Corrosion Lab (List of Experiments)

Experiment No	Title
1	To prepare the samples for corrosion testing.
2	To determine corrosion rate of given sample by weight loss method in Sulfuric acid solution.

r						
3	To determine corrosion rate of given sample by weight loss method in					
C C	Sodium Chloride (NaCl) solution.					
	To determine corrosion rate of given sample by weight loss method in					
4	Hydrochloric acid solution.					
_	Comparative study of corrosion rate by weightless method for different acid					
5	solutions.					
6	To study and perform IGC corrosion of stainless steel.					
7	Determination of Inter granular corrosion susceptibility by microstructure					
7	evaluation.					
8	To study and observe galvanic corrosion of two metals.					
0	Observation of Effect of anodic area and type of material on galvanic					
9	corrosion of metals.					
10	To perform & observe pitting corrosion in stainless steel.					
11	To study & perform the effect of current density on anodic dissolution.					
12	To perform the electroplating of copper on a given base metal.					
13	To perform the Anodizing of Aluminum in H ₂ SO ₄ Solution.					
14	To study and perform cathodic protection of a metal by sacrificial anode					
14	method.					
15	To Study corrosion rate by Tafel Extrapolation method.					

5. Reference Books

- Denny A Jones, Principles and Prevention of Corrosion (second edition), Prentice-Hall, N. J. (1996).
- 2) H. H. Uhlig and R. W. Revie, Corrosion and Corrosion Control, Wiley (NY) (1985).
- 3) L. L. Shreir, Corrosion. Vol I and II, Butterworths, Kent (1976).
- 4) M.Pourbaix, Atlas of Electrochemical Equilibria in aqueous solutions, NACE, Houston (1974).
- 5) J. O. M. Bockris and A. K. N Reddy, Modern Electrochemistry. Vol. I and II, Plenum Press (NY) (1970).
- 6) J. D. A Miller, Microbial Aspects of Metallurgy, Medical and Tech. Pub. Co. Lancaster (1971).

¹⁾ M. G. Fontana, Corrosion Engineering (Third Edition) McGraw-Hill Book Company (NY) (1987).

- 7) C. A. C. Sequeira, Microbial Corrosion, European Federation of Corrosion, Maney Pub. (2000).
- 8) B. J. Little, Microbiologically Influenced corrosion, Wiley-Intersciene (2007)
- 9) H. Videla, J. F. Wilkes, R. A. Silva, Manual of Biocorrosion, CRC Press (1996).
- 10) S.W. Borenstein, Microbiologically influenced corrosion handbook, Woodhead Pub. Ltd, Cambridge (1994).

6. Digital Learning Resources

www.nptel.ac.in

7. Question Paper Pattern for End Sem Exam:

	Subject: Powder Metallurgy								
Program: B. Tech Metallurgical Engineering				Subject Code: MT0603 Semester: VI					
Teaching Scheme Examination Evaluation Scheme									
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total	
4	0	2	5	60	60	40	40	200	

1. Course Outcomes:

Student will be able to:

- Define and explain basic conditions of successful application of powder metallurgy technology for production of materials and components
- Formulate advantages and disadvantages of powder metallurgy
- Evaluate and propose optimum technology for preparation of powder materials
- Classify typical representatives of individual powder metallurgy technologies
- Evaluate and evaluate influence of individual technological parameters on basic powder metallurgy operations
- Optimize material and technological parameters of production

2. Content:

		Allotted hours
Unit1	Introduction: Historical and modern developments in P/M.	8 hours
	Advantages limitations and applications of Powder Metallurgy.	
	Characteristics of metal powder in terms of particle size, shape and	
	size distribution, Characteristics of powder mass such as apparent	
	density, tap density, flow rate, friction conditions. Properties of green	
	compacts and sintered compacts.	
Unit2	Important methods of metal powder manufacturing like machining,	10 hours
	milling, atomization, electrodeposition, reduction from oxide,	
	carbonyl process, production of alloy powders, new development.	
	Powder conditioning, fundamentals of powder compaction, density	
	distribution in green compacts, types of compaction presses,	
	compaction tooling and role of lubricants. Single and double die	
	compaction, isostatic pressing, hot pressing, effect of variables on	
	sintering, sintering atmospheres and sintering furnaces.	

Unit3	Powder rolling, powder forging, powder extrusion and explosive forming technique Definition of sintering, stages of sintering	10 hours
Unit4	Mechanism of sintering, liquid-phase sintering, infiltration process. Study of sintered bearings, cutting tools, and metallic filters. Study of friction and antifriction parts and electrical contact materials.	10 hours

3. Powder Metallurgy Lab (List of Experiments)

Experiment No	Title of experiment
1	To study the sieve analyses of metal powders and determine the correction factor.
2	To study the particle size and shape of metal powders by Image analyzer.
3	To study the importance of blending and mixing operation for powder metallurgy.
4	To determine the apparent density and tap density of metal powders.
5	To determine the friction index and flow rate by hole flow meter.
6	To study and carry out heat treatment on metal powders.
7	Demonstrations of single action die compaction of metal powders by hydraulic press.
8	To study the sintering mechanism of metal pellets.
9	Characterization of sintered product.
10	To produce metal powder by Water Atomization Technique
11	Characterization of metal powder produced by water atomization technique
12	To produce metal powder by Gas Atomization Technique
13	Characterization of metal powder by Gas Atomization Technique
14	Copper powder production by electrolysis method.
15	Characterization of copper powder produced by electrolysis method.

4. Text Book(s):

1) Introduction to Powder Metallurgy by A.K.Sinha, 2011.

2) Principles of powder metallurgy by W.D. Jones, 1960.

5. Reference Books:

- 1) Handbook of powder metallurgy by Henry Herman Hausner, 1973.
- 2) Powder Metallurgy Technology by G. S. Upadhyaya, 2002.

6. Digital Learning Resources

http://thelibraryofmanufacturing.com/powder_processes.html http://en.wikipedia.org/wiki/Powder_metallurgy https://www.google.co.in/#q=powder+manufacturing+techniques http://www.ttu.ee/public/m/Mehaanikateaduskond/Instituudid/Materjalitehnika_instituut/MT X0100/powder.pdf

7. Question Paper Pattern for End Sem Exam:

	Subject: Metal Forming								
Program: B. Tech Metallurgical Engineering Subject Code: MT0604 Semester: VI									
Teaching Scheme Examination Evaluation Scheme									
Lecture	Tutorial	Practical	Credits	Unive Theor Exam	-	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	2	0	4		60	0	40	0	100

1. Course Outcomes:

- Understand the principle of deformations and energy requirements.
- Understand different methods of deformations to produce various shapes.
- Get knowledge of special techniques of deformation.

2. Contents

		Allotted hours
Unit 1	Fundamentals of metal working: Yield criteria, Von-Mises	8 hours
	equation, Classification of metal forming processes, Mechanics of	
	metal working, Flow curve for materials, Temperature in Metal	
	Working, Hot working, Cold working & Warm working, Strain rate	
	effect of metallurgical structure and non-metallic inclusion on the	
	manufacturing process, Workability, Residual stresses, Annealing of	
	cold-worked metals.	
Unit 2	Forging: Classification of forgoing processes, Forging equipment and operations, Open die forging, Closed die forging, Plane strain forging analysis, Forging defects, Metallurgical variables associated with forging, Powder metallurgy forging, Residual stresses in forging. Rolling: Terminology of rolled products, Different kinds of rolling mills, Deformation zone in rolling, Neutral point, Angle of bite, Forward slip, Roll flattening, Rolling variables, Hot rolling, Cold rolling, Rolling of blooms billets, slabs, plates, strips, sheets, bars, rods & light section, Lay out of different mills for rolling of above products, Elementary roll pass design, Forces and geometrical relationships in rolling, Defects in rolled products.	10 hours

Unit 3	 Extrusion: Classification of extrusion processes, Direct and indirect extrusion, Impact extrusion, Hydrostatic extrusion, Extrusion equipment, Extrusion ratio, Process variables, Lubrication & defects in extrusion, Derivation of extrusion pressure, Extrusion of tubing, Production of seamless pipe and tubing. Drawing: Rods, wires and tubes: Theory and practice of wire drawing, Wire drawing equipment, Variables in wire drawing, Defects in formed products. 	10 hours
Unit 4	Sheet metal working: Shearing, Blanking, Bending, Stretch forming, Deep drawing, Spinning, Piercing, Swaging, Embossing, Coining, High energy rate forming, explosive forming, electromagnetic forming, electro hydraulic forming, formability diagrams, Super- plasticity.	10 hours

1) Mechanical Metallurgy by G. E. Dieter, SI Metric Editions, McGraw-Hill Book Company, 1988.

4. Reference Books

- 1) Manufacturing Technology (Foundry, Forming and Welding) by P. N. Rao, TMH, 2007.
- 2) Metal Forming: Mechanics and Metallurgy by William F. Hosford and Robert M. Caddell, PTR Prentice-Hall (USA), 2011
- Handbook of Metal Forming by K. Lange (Editor-in-Chief), Springer Verlag (Germany), 1985.

5. Digital Learning Resources

http://nptel.ac.in/courses/112106153/ http://www.doitpoms.ac.uk/tlplib/metal-forming-1/index.php http://www.doitpoms.ac.uk/tlplib/metal-forming-2/index.php http://freevideolectures.com/Course/2368/Manufacturing-Processes-I/4http://freevideolectures.com/Course/2368/Manufacturing-Processes-I/12

6. Question Paper Pattern for End Sem Exam:

Subject: Material Characterization (Elective – 1)									
Program: B. Tech Metallurgical EngineeringSubject Code: MT0605Semester: T							Semester: VI		
Teaching Scheme Examination Evaluation Scheme									
Lecture	Tutorial	Practical	Credits	Theo	versity ory nination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	2	0	4		60	0	40	0	100

1. Course Outcomes :

- Theory and practice of x-ray and electron diffraction.
- Basic elements of electron microscopy.
- Basic aspects of optical characterization methods including Raman and infrared spectroscopy

2. Contents

		Allotted hours
Unit 1	Importance of Material characterization, Classification of techniques for characterization. Image formation, resolving power, numerical aperture, empty magnification, depth of focus, components of microscopes, important lens defects and their correction, principles of phase contrast, interference and polarized light microscopy, Image analyzer.	8 hours
Unit 2	Thermal Analysis techniques: Basic Principles, Working and applications of DTA, TGA, TMA and DSC.	10 hours
Unit 3	Studies by electron microscopes: Principle, Construction and Working of TEM, SEM, STEM with their merits, demerit and applications, techniques of replica preparation.	10 hours
Unit 4	X-Ray diffraction and their applications: Working principles of diffractometer. Indexing of XRD patterns, determination of crystal structure, lattice parameter, and crystallite size by diffraction techniques. Numerical based on XRD.	10 hours

Spectroscopic and Chemical analysis Techniques: IR & Raman	
spectroscopy, Energy Dispersive Spectroscopy (EDS) & Wavelength	
Dispersive Spectroscopy (WDS), XRF.	

- 1) J.M. Walls, Editor, Methods of Surface Analysis: Techniques & Applications, Cambridge University Press, 1990.
- 2) John P. Sibilia, A guide to Material Characterization & Chemical Analysis, VCH Publishers, 1988.
- 3) An Introduction to Materials Characterization by P. R. Khangaonkar, Penram International Publishing (India) Pvt. Ltd, 2010.

4. Reference Books

- 1) Joseph I Goldstein, Dale E Newbury, Patrick Echlin and David C Joy, "Scanning Electron Microscopy and X-Ray Microanalysis", 3rd Edition, 2005.
- 2) Spencer, Michael, Fundamentals of Light Microscopy, Cambridge University Press, 1982.
- 3) David B. Williams, C. Barry Carter, "Transmission Electron Microscopy: A Textbook for Materials Science", Springer, pub. 2009.
- 4) Joseph I Goldstein, Dale E Newbury, Patrick Echlin and David C Joy, "Scanning Electron Microscopy and X-Ray Microanalysis", 3rd Edition, 2005.
- 5) Encyclopedia of Materials Characterization,' Editors C. Richard Brundle, Charles A. Evans, Jr., Shaun Wilson.
- B.D.Cullity and S.R.Stock, "Elements of X-Ray Diffraction" Third edition, Prentice Hall, NJ, 2001.
- 7) G.W.H. Hohne, W.F. Hemminger, H.-J. Flammersheim, "Differential Scanning Calorimetry", Springer, 2nd rev. a. enlarged ed., 2003.
- 8) 'Fundamentals of light microscopy and electronic imaging' Douglas B. Murphy, 2001, Wiley-Liss, Inc. USA.

5. Digital Learning Resources

www.tedpella.com/books_html/books.htm
www.net/biobooks_1_electron-microscopy.html; www.mt.com/ta

MOOC: Fundamentals of optical and scanning electron microscopy: https://swayam.gov.in/course/1399-fundamentals-of-optical-and-scanning-electron-microscopy

6. Question Paper Pattern for End Sem Exam:

As per Appendix A

Subject: Computational Materials Science (Elective – 1)								
Program: B	. Tech Metal	lurgical Eng	ineering	Subject Co	de: MT0611		Semester: VI	
Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	2	0	4	60	0	40	0	100

1. Course Outcomes

- This course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation, molecular simulation, phase diagram modeling, finite element modeling, and materials selection.
- The course will familiarize students with a broad survey of software tools in computational materials science, scientific computing, and prioritize the physical principles underlying the software to confer an understanding of their applicability and limitations.

2. Course Content

		Allotted hours
Unit 1	Introduction to Computational Materials Science, multiple scales in	8 hours
	crystalline materials, materials scales for modeling, Introduction to	
	simple numerical methods for solving coupled differential equations	
	and for studying correlations, applications.	
Unit 2	Introduction to quantum mechanical modeling: Hartree-Fock and	10 hours
	Density function theory (DFT), plane wave based DFT calculations,	
	equilibrium properties and surfaces from DFT calculations, atomistic	
	modeling of defects in materials, applications.	
	Introduction to Monte Carlo Methods: Kinetic, Lattice, applications.	
Unit 3	Classical equilibrium statistical mechanics:	10 hours
	Phase space, Hamiltonian's equation, macroscopic translation and	
	rotation, phase space coordinates, canonical transformations,	
	applications.	

	Molecular Dynamics: Introduction, brief MD algorithm, microcanonical ensemble (NVE), velocity-verlet algorithm, canonical ensemble (NVT), applications.	
Unit 4	Multiscale methods: Introduction to multiscale models, sequential multiscale models, concurrent multiscale models, Hierarchial methods, partitioned- domain methods, spanning time scales, Statistical mechanics of systems in metastable equilibrium, applications. Introduction to phase diagram modeling using CALPHAD and Thermo-Calc, applications.	10 hours

1) Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Ellad B. Tadmor and Ronald E. Miller (2011) Cambridge University Press.

4. Reference Books

- 1) Guo X.Z. (Ed.), 2007, "Multiscale Materials Modelling: Fundamental and Applications", Woodhead Publishing Limited, Cambridge.
- 2) Raabe D., 1998, "Computational Materials Science", Wiley VCH Verlag GmbH.

5. Digital Learning Resources

http://nptel.ac.in/

6. Question Paper Pattern for End Sem Exam

		Sub	ject: Indu	strial Ce	eramics &	Polymers (Elect	ive – 2)		
Program: B. Tech Metallurgical Engineering Subject Code: MT0606 Semester: VI									
Teaching Scheme Examination Evaluation Scheme									
Lecture	Tutorial	Practical	Credits	Univer Theory Exami	v	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
4	0	0	4		60	0	40	0	100

1. Course Outcomes:

- Students will be able to understand the various types of ceramic and different between advance and traditional ceramics.
- They can understand the developing methods of raw materials.
- They can get the understanding of sintering mechanism of ceramics and characteristics of sintered ceramics.
- They can get the knowledge of processing method of ceramics.
- They can understand the process that is used to produce glass-ceramics.
- They can get the idea about properties, applications of different clay products, refractory ceramics and abrasive ceramics.
- Comparison between traditional and advance ceramics
- Application of advance ceramics
- They can understand the polymer molecule in terms of its chain structure and, in addition, how the molecule may be generated from repeat units
- They can understand the number-average and weight-average molecular weights, and degree of polymerization

2. Contents

		Allotted
		hours
Unit 1	Introduction, definition and scope of ceramics. Historical	8 hours
	perspective, classification, Structure of ceramics, Pauling's Rules,	
	Ceramic Phase Diagrams, Silicate structures.	
	Traditional ceramics: An overview, history, raw materials,	
	Shaping, sintering, abrasives, White wares, Glazing and decoration.	
	Refractories: Types of refractories, fireclay, mullite, silica	
	refractories, magnesite refractories, carbide & nitride refractories,	
	pure oxide refractories, chrome refractories	

Unit 2	Glass: Nature of glass, structure, glass forming systems, silicate	10 hours
	systems, non-silicate systems, Types of Glasses, manufacture of	
	glass, Viscous Deformation of Glasses, Ceramic Glass, Advance	
	ceramics and their application.	
	Processing of Ceramics: Processing of ceramic powders, shape	
	forming operations- Dry pressing, isostatic pressing, Hot Pressing,	
	HIP, slip casting, Extrusion method, injection molding, hot	
	pressing and hot isostatic pressing, Sol -gel processing and	
	monolithic ceramics. Thermal Treatment- Drying & Firing of	
	ceramics: kiln design & sintering mechanism and densification,	
	Properties: (Thermal, Mechanical & Optical properties) of	
	sintered ceramics. Ceramics used for energy and environment	
	technologies (fuel cell, lithium battery, gas sensor and catalytic	
	support), ceramic coating, ceramic in bio-medical application,	
	nanotechnology and ceramics	
Unit 3	Historical Background, Basic concepts of polymeric materials,	10 hours
	Classification and forms of Polymers, Tacticity, Functionality,	
	Different types of polymerization, chemistry of Polymerization:	
	Chain polymerization, Step polymerization, Polymerization	
	Techniques: Bulk polymerization, Solution polymerization,	
	Suspension polymerization, and Emulsion polymerization.	
		101
Unit 4	Molecular weight & Size, Determination of molecular weight -	10 hours
	methods for measuring number average, weight average, viscosity	
	average MW, Molecular weight distribution, Degree of	
	Polymerization, Polymer Degradation, Glass transition	
	temperature, Crystallinity, Elastomers, Fiber and plastic, Additives,	
	Processing of polymers- Extrusion, Injection Molding, Transfer Moulding, and Play Molding	
	Moulding, and Blow Molding.	

- 1) Chemistry of solids by A. K. Galwey, Chapman & Hall Publication
- 2) Properties of Matter by Thomas Pollack, McGraw Hill publication
- 3) Fundamentals of Ceramics Barsoum
- 4) Introduction to Ceramics W.D Kingery
- 5) J. S. Reed: Introduction to the principles of ceramic processing
- 6) Chemistry of Glasses A. Paul

4. Reference Books

- 1) The Science and Engineering of Materials- by Donald R. Askeland
- 2) Materials Science & Engineering- by William F Smith
- 3) Introduction to Ceramics by F.H.Norton.
- 4) Materials Science and Processes, S. K. Hajra Choudhary, Indian Book Distributing Co., Ilifo book distributors Co., Kolkata, 1985
- 5) Materials Science and Engineering by William F Smith.

5. Digital Learning Resources

www.nptl.ac.in

6. Question Paper Pattern for End Sem Exam

			Subjec	t: Nano Technol	ogy (Elective – 2)			
Program: B. Tech Metallurgical Engineering				Subject Co	Subject Code: MT0607			
Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
4	0	0	4	60	0	40	0	100

1. Course Outcomes:

After a successful completion of the course, students should be able to:

- Describe and explain Nanotechnology.
- Describe Nanomaterials based on their dimensionality.
- Explain the importance of reduction in materials dimensionality, and its relationship with materials properties
- Explain top-down approaches for Nanomaterial fabrication, and give some examples
- Perform a literature survey on a chosen topic in the scientific literature
- Write a scientific report with appropriate references and citations.
- Present results of a research in the form of an oral presentation.

2. Contents

		Allotted hours
Unit 1	Introduction to Nanomaterials and nanotechnology, historical developments. An overview of scope & applications of nanotechnology, classifications and types of Nanomaterials. Basic	8 hours
	understanding of various phenomena at nanoscale namely size confinement, interfacial surface phenomena.	
Unit 2	Introduction to basic building blocks namely atoms, molecules, self-assembly, carbon nanotubes, nanocrystals, fullerenes, quantum dots, and quantum wires. Functional properties of nanomaterials such as physical, mechanical, electrical, magnetic, chemical and optical properties. Size dependence of material at nano scale. Bulk vs. nano properties of materials.	10 hours
Unit 3	Synthesis & fabrication techniques 'Top down' vs. 'Bottom-up' approach of synthesis.	10 hours

	Review of synthesis methods namely sol-gel method, chemical vapour deposition, physical vapour deposition, sputtering, etc. Consolidation methods for nanopowders such as cold isostatic pressing (CIP), hot isostatic pressing (HIP), Dynamic compaction, Conventional and Microwave sintering.	
Unit 4	Characterization of nanomaterials by using transmission electron microscopy (TEM, atomicforce microscopy (AFM). Applications of nanomaterials namely nanograined structuralmaterials & nanocomposites, nanomagnetic materials, chemical applications etc.	10 hours

- 1) Nano Materials by A.K.Bandopadhyay New Age International Publishers
- 2) Introduction to Nanoscience and Nanotechnology by K.K.Chattopadhyay and A.N.Banerjee, PHI Learning Pvt. Ltd.
- 3) Nanostructured Materials: Professing, Properties and Applications, ed. by C.C. Koch, William Andrew Publishing, New York, 2002.

4. Reference Books

- 1) Nanotechnology by George Timp, Springer-Verlag, New York, 1999.
- 2) Nanoparticles and Nanostructured Films: Preparation, characterization & Applications, ed. By J.H. Fendler, John Willey & Sons, 1998.
- 3) Handbook of Nanophase and Nanostructured Materials, ed. by Z.L. Wang, Z. Zhang and Y. Lim, Kluwer Academic Publisher, 2002.
- 4) Handbook of Nanostructured Materials and Nanotechnology, ed. by H.S. Nalwa, Vol. 1-5, Academic Press, 2002.
- 5) Carbon Nanotubes: Science and Applications ed. by M. Meyyappan, CRC Press, Boca Raton Florida, 2004.
- 6) Processing and Properties of Structural Nanomaterials, Leon L. Shaw, C. Suryanarayana & Rajiv S. Mishra, TMS, 2003.
- 7) Nanomaterials: Synthesis, Properties & Applications, ed. by A.S. Edelstein and R.C. Cammarata, published by Institute of Physics, UK, 1996.

5. Question Paper Pattern for End Sem Exam

	Subject: Composite Materials (Elective – 2)								
Program: B	Program: B. Tech Metallurgical Engineering					MT0608		Semester: VI	
Teaching Scheme Examination Evaluation Scheme									
Lecture	Tutorial	Practical	Credits	University Theory Examinatio	Р	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
4	0	0	4	60		0	40	0	100

1. Course Outcomes:

- Name the three main divisions of composite materials, and cite the distinguishing feature of each.
- Cite the difference in strengthening mechanism for large-particle and dispersionstrengthened particle-reinforced composites.
- Distinguish the three different types of fiber reinforced composites on the basis of fiber length and orientation; comment on the distinctive mechanical characteristics for each type.
- Calculate longitudinal modulus and longitudinal strength for an aligned and continuous fiber reinforced composite.
- Compute longitudinal strengths for discontinuous and aligned fibrous composite materials.
- Note the three common fiber reinforcements used in polymer-matrix composites, and, for each, cite both desirable characteristics and limitations.
- Cite the desirable features of metal-matrix composites.
- Note the primary reason for the creation of ceramic-matrix composites.
- Name and briefly describe the two subclassifications of structural composites.

2. Contents

		Allotted hours
Unit 1	Introduction, Review of current developments, Importance of Composites over other materials. Advantages and disadvantages of composite materials, Matrix and reinforcement phases, Classification of composite materials, Types of composite materials – dispersion strengthened composites, particulate composites, concretes, Fiber-reinforced Composites, Structural	
	composite.	

Unit 2	Types of reinforcements – Whiskers and fibers, preparation, structure and properties of different reinforcing fibers, carbon fibers, glass fibers, polymer fibers and alumina fibers. Fiber- reinforced Composites: Influence of Fiber Length, Critical Fiber Length, Short and Continuous Fibers, Influence of Fiber Orientation and Concentration, Fiber reinforced composites with different matrix systems, polymer matrix (thermoset and thermoplastic) composites, metal matrix composites and ceramic matrix composites, carbon-carbon composite, intermetallic composites.	10 hours
Unit 3	Strengthening mechanisms, Aspect Ratio, Rule of Mixture, Role of interfaces in composites, Toughening mechanisms in PMCs, MMCs, and CMCs, Wettability and bonding. Properties of composites: Mechanical Properties of composite, Effect of fiber volume content, orientation of fibers & void contents on mechanical properties of composite, fracture behaviour of composites, Applications of composites in different field, Environmental effects in composites.	10 hours
Unit 4	Fabrication of composites, Fiber Forms, Prepregs, Moulding Compounds-Processes, Lay-Ups, Filament Winding, Pultrusion, vacuum bag moulding, Pressure bag moulding, vacuum impregnation and injection moulding, transfer moulding, Green composites; Synthesis and Properties of Nanocomposites, Hybrid composites.	10 hours

- 1) K.K. Chawla, Composite Materials Science & Engg., Springer- Veslag, New York, (1988).
- 2) Mel M. Schwartz, Composite Materials: Properties, Non-destructive testing and Repair, Prentice Hall, New Jersey, (1996).
- 3) L.J. Broutman and R.M. Krock, Modern Composite Materials, Addison-Wesley, (1967).
- 4) David A Colling & Thomas Vasilos, Industrial Materials: Polymers, Ceramics and Composites, vol. 2, Prentice Hall, N. Jersey, (1995).

4. Reference Books

1) The Science and Engineering of Materials by D. R. Askeland, Fifth Edition, 2006

2) Hand Book of composites – G. Lubin, 1982.

3) An introduction to composites materials – D. Hull, 1996.

5. Digital Learning Resources

http://nptel.ac.in/syllabus/syllabus.php?subjectId=113107045 http://www.netcomposites.com/guide/polymer-composites/2

6. Question Paper Pattern for End Sem Exam

Subject: Nuclear Metallurgy (Elective – 2)								
Program: B.	. Tech Metall	lurgical Eng	ineering	Subject Co	de: MT0609		Semester: VI	
Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
4	0	0	4	60	0	40	0	100

1. Content:

		Allotted hours
Unit1	Atomic Structure: Fundamental Properties. Atomic Nucleus. Radio activity, half life period and isotopes Fission, fusion and other nuclear reactions. Critical mass. Neutron cross section,	8 hours
	Multiplication factor and nuclear disintegration.	
Unit2	Essential parts of Nuclear Reactor. Reactor types, Reactor Fuel Cycle. Indian atomic power plants, Nuclear power program me in India and future trends. Difference in separation methods as	10 hours
	compared to conventional methods.	
Unit3	Purity requirement of nuclear metal. Separation process- Ion and Solvent extraction techniques. Occurrence, extraction mechanical and physical properties and uses of Uranium and Thorium. Occurrence, extraction mechanical and physical properties and uses of Zirconium, hafnium and plutonium.	10 hours
Unit4	Methods of enrichment and production of ultrahigh purity metals and their importance in nuclear metallurgy. Influence of neutron damage on mechanical properties. Effects of radiation damage on steel and Zircalloys, Scope of beryllium in nuclear plants. Extraction, occurrence, physical and mechanical properties of Be and its applications, Reactor pressure vessel embrittlement (indicating parameters, mechanisms, mitigation methods).	10 hours

1) Nuclear Reactor fuel elements – Metallurgy & Fabrications-Kaufmann, 1962.

4. Reference Books

- 1) Extraction of non ferrous metals- H.S.Ray, 2006.
- 2) Handbook of Nuclear Engineering: Vol. 1: Nuclear Engineering Fundamentals, edited by Dan Gabriel Cacuci, Springer, 2010.
- 3) Proceedings of Seminar on Nuclear metallurgy-Bombay chapter

5. Digital Learning Resources

https://www.euronuclear.org/1-information/energy-uses.htm http://www.youtube.com/watch?v=ueainTAy7G0 http://www.cdc.gov/niosh/ocas/pdfs/abrwh/pres/2012/dc-nmi0912fc.pdf http://en.wikipedia.org/wiki/Synthesis_of_precious_metals

6. Question Paper Pattern for End Sem Exam:

Subject: Modelling of Metallurgical Processes (Elective – 2)								
Program: B	. Tech Metal	lurgical Eng	ineering	Subject Co	ode: MT0610		Semester: VI	
Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
4	0	0	4	60	0	40	0	100

1. Course Outcomes

- Description of metallurgical and materials processes and some simulation applications.
- Fundamental principles, methods, and approaches of simulation and modeling.
- Developing the theoretical background of metallurgical processes' simulation and modeling.
- To understand the importance and necessity of simulation and modelling studies in metallurgical and materials processes.
- Improve his/her theoretical background on simulation and modelling of metallurgical and materials processes.
- Be aware of the resulting innovations by applying simulation and modelling software.
- Create a model of a given metallurgical process by considering the related control parameters.

2. Course Content

		Allotted hours
Unit1	Introduction to modelling & simulation, Basic principles of modelling	8 hours
	& simulation, Mathematical and physical basis of modeling & its	
	methodology, Basic approaches and techniques of modelling &	
	simulation, Examples of metallurgical and materials processes.	
Unit2	Mass and energy balances, and simultaneous solutions, In-class	10 hours
	demonstration of modelling software, Modeling and Simulation in	
	Materials Science, Application of the methodology for materials	
	behavior and processing problems, Modeling of structural materials,	
	Description of certain metallurgical processes (roasting, smelting,	
	leaching, precipitation, electrolysis, refining, etc.) and steps of their	
	mathematical modelling and approaches.	

Unit3	Concepts of batch, and continuous processes in metallurgy, Determining the effect of controlling parameters, such as composition, temperature, particle size, concentration, pressure, gas/liquid/solid flow rate, stirring speed, current density, etc., and mathematical modelling thereof. Assigning these parameters to the student groups as term projects.	10 hours
Unit4	Case studies on mathematical modelling from iron and steel making will be discussed such as modelling of blast furnace, basic oxygen furnace, electric arc furnace, ladle furnace, ingot casting, continuous casting, forging, electroslag refining, sheet metal forming etc. some case studies on physical modelling such as ladle furnace, tundish, continous casting etc.	10 hours

- 1) Engineering Process Metallurgy, R. I. L. Guthrie, Oxford University Press.
- 2) Barber Z.H., 2005, "Introduction of Materials Modeling", Maney Publishing.
- King P.R., 2001, "Modeling and Simulation of Mineral Processing Systems", ISBN:0-7506-4884-8.West

4. Reference Books

- 1) Mosterman P. J.,2013, "Realtime simulation technologies: principles, methodologies, and applications", (Eds. Popovici K., Mosterman P. J.), Taylor & Francis Group, LLC., CRC Press, Boca Raton, FL, USA. ISBN: 978-1-4398-4665-0.
- Ghasem N., 2012, "Computer methods in chemical engineering", Taylor & Francis Group, LLC., CRC Press, Boca Raton, FL, USA. ISBN: 978-1-439-84999-6.
- 3) Peters E., Dreisinger D., 1990, "Mixing, Leaching and Modelling Course Notes", Metals and Materials Eng. Dept., Univ. of British Columbia, Vancouver, Canada.
- 4) Bautista G.R., Wesely J.R., Warren W.G., 1986, "Hydrometallurgical Reactor Design and Kinetics", A Publication of The Metallurgical Society, Inc., U.S.A.
- 5) Bryson W.A., 1981, "Modelling the Performance of Electrowinning Cells", Proceedings Hydrometallurgy 81, Manchester 1981, pp.G2/1-G2/11.

5. Digital Learning Resources

http://nptel.ac.in/

6. Question Paper Pattern for End Sem Exam

As per Appendix A

	Subject: Advanced Technical Communication And Soft Skills							
Program: B	Program: B. Tech Metallurgical Engineering			Subject Co	ode: SH0607		Semester: VI	
	Teaching	Scheme		Ex	amination Eva	luation Schem	ie	
				University	University	Continuous	Continuous	Total
				Theory	Practical	Internal	Internal	
				Examination	Examination	Evaluation	Evaluation	
						(CIE)-	(CIE)-	
Lecture	Tutorial	Practical	Credits			Theory	Practical	
1	0	0	0	60	00	40	00	100

	Sr. No.	Content
Speaking	1	Vocabulary Games: Advanced Level
	2	Role Play 1
	3	Role Play 2
	4	Role Play 3
	5	Selected speeches & Songs: Declamation 1
	6	Selected speeches & Songs: Declamation 1
	7	Report Presentation Seminar
	8	Report Presentation Seminar
	9	Report Presentation Seminar
	10	Interview Skills (Mock Interview Sessions 2)

Writing	11	Writing Reports
	12	Making Proposals
	13	Resume Building
	14	Letter, Email application

Reference Books:

- 1. Fred Luthans, Organizational Behaviour, McGraw Hill
- 2. Lesikar and petit, Report writing for Business
- 3. M. Ashraf Rizvi, Effective Technical Communication, McGraw Hill
- 4. Wallace and masters, Personal Development for Life and Work, Thomson Learning
- 5. Hartman Lemay, Presentation Success, Thomson Learning
- 6. Malcolm Goodale, Professional Presentations

- 7. Farhathullah, T. M. Communication skills for Technical Students
- 8. Michael Muckian, John Woods, The Business letters Handbook
- 9. Herta A. Murphy, Effective Business Communication
- 10. Lehman, Dufrene, Sinha BCOM, Cengage Learning

Web resources/ MOOCs:

Introduction to English Language & Literature Mod-1 Lec-1 https://www.youtube.com/watch?v=xC3M9EqduyI

The English Language Mod-1 Lechttps://www.youtube.com/watch?v=HsR4jFszFdw#action=share

International English Mod-1 Lec-4 https://www.youtube.com/watch?v=FT4cQkXCc8g

Effortless EnglishRule-1 English Phrases: https://www.youtube.com/watch?v=r5z-lilm-gg

Pronunciation Training Techniques:

https://www.youtube.com/watch?v=wB8mr4iViy0

Make Body Language Your Superpower: https://www.youtube.com/watch?v=wB8mr4iViy0

English Job Interviews | Best Answers to Questions: https://www.youtube.com/watch?v=wB8mr4iViy0

7TH SEMESTER

B-TI	B-TECH METALLURGICAL ENGINEERING, SEMESTER –VII TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017												
				TEACHING SCHEME				EXAMINATION SCHEME					
SR						STI	HOURS	T	HEOR	RY	PRACT		
NO	CODE	SUBJECTS	L	Т	Р	CREDITS		C	E				TOTAL
			L	•				MID	IE	ESE	CIE	ESE	
1	MT0701	Metal Joining Processes	03	00	02	04	05	30	10	60	40	60	200
2	MT0702	Non-Destructive Testing	04	00	00	04	04	30	10	60	00	00	100
3	MT0703	Alloy Design	03	02	00	04	05	30	10	60	00	00	100
4	MT0704	Material Testing and Standards	03	00	02	04	05	30	10	60	40	60	200
5	MT0705	Selection of Materials and Failure Analysis	03	02	00	04	05	30	10	60	00	00	100
	MT0706	Advanced Ferrous Metallurgy (EL – 2)										00	
	MT0707	Advanced Materials and Applications (EL – 2)						4 30					
6	MT0708	Advanced Foundry Technology (EL – 2)	04			04	04		10	60	00		100
	MT0709	Phase Transformations $(EL - 2)$	04	00	00	04	04	50	10	00	00		100
	MT0710	Advances in Thin Film Technology (EL – 2)											
	MT0711	Industrial Welding Codes and Standards (EL – 2)											
	MT0712	MOOC Course – 2 (EL – 2)											
7	CV0712	Disaster Management	01	00	00	00	01	00	00	00	00	00	00
		TOTAL	21	04	04	24	29	180	60	360	80	120	800

	Subject: Metal Joining Processes								
Program: B.	Program: B. Tech Metallurgical Engineering Subject Code: MT0701 Semester: VII								
Teaching S	Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	University Theory Examination		University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	0	2	4		60	60	40	40	200

1. Course Outcomes

- Understand the basics & importance of joining processes.
- Understand the various types of Joining operations used in the industries
- Co-relating the basic machine products with the of product applicability & use skills for specific joining processes.
- Developing the capability to analyze and select the various criteria of Quality joining of the metals
- Implement effectively and accurately the suitable joining process to improve the efficiency & life of the product / Machines
- Learn various quality dimensions of joints, cost factor, factor of safety etc.
- Understanding the advance processes of joining& its applicability;
- Joining any national institutes like IIT, NIT, IISc in specialized fields of metallurgical & materials engineering such as Welding technology.
- For a 'Metallurgist', there is lot of job opportunities with tremendous growth in almost all types of industrial sectors in the present scenario. These jobs include different functions such as, Material Scientist, Techno-commercial Manager, Quality control & assurance, Marketing & Sales, Project & Planning.
- Services such as ONGC, IOCL, SAIL, GAIL, ESSAR, ISPAT, laboratories of national and inter-national repute such as NASA, BARC, BARC, CSIR, NML, DRDO, DMRL, IPR, etc.

2. Contents

		Allotted hours
Unit 1	Introduction: History, Importance of metal joining processes,	8 hours
	Classification of metal joining processes - Classification based on	
	application of filler material & without filler material, source of	
	energy, fusion and pressure welding processes, joint design and	
	edge preparation, physics of arc, characteristic of arc. Welding	

	positions. Soldering and brazing: Difference between both the processes, consumables used, methods of brazing, fluxes used, and their purpose and flux residue treatment, comparison with welding process.	
Unit 2	Metal transfer, forces acting on the arc, different modes of metal transfer, heat flow in metals, prediction of heating and cooling rates. Manual metal arc(MMA) or shielded metal arc (SMA) welding, Submerged arc welding (SAW), Gas metal arc welding (GMAW) or MIG/MAG welding, TIG welding, Plasma Arc welding: Principle, Equipment requirement, electrodes for welding of structural steels, electrode coating classification, process description, shielding gases, advantages and disadvantages, application of processes.	10 hours
Unit 3	Resistance welding: General principle of heat generation in resistance welding, application of resistance welding processes. Process details and working principle of spot, seam, and projection welding, electrode materials, shapes of electrodes, electrode cooling, selection of welding currents, voltages.	10 hours
Unit 4	Other welding processes like Electron beam welding, Laser beam welding, Friction welding, Friction Stir Welding explosive welding, ultrasonic welding, diffusion welding, Electroslag and Electro gas welding etc. Weldability and defects: introduction, Weldability test, Weldability of ferrous and non ferrous materials, joining metallurgy of the dissimilar metals, clad metals etc., Welding defects.	10 hours

3. Metal Joining Processes Lab (List of Experiments)

Experiment No	Title of experiment
1	To study the edge preparation and preparation of different types of weld joints.
2	To study effect of proportion of oxygen and acetylene on the gas welding flame.
3	To study the effect of welding parameters on weld quality by SMAW welding.
4	Characterization of weldments prepared by SMAW
5	Preparation of joints using Tungsten Inert Gas welding.

6	Characterization of weldments prepared by TIG
7	Preparation of joints using Metal Inert Gas welding.
8	Characterization of weldments prepared by MIG
9	Preparation of different type of joints uses spot welding and butt welding.
10	Characterization of weldments prepared by spot and butt welding
11	To study the effect of rpm on weld microstructure by friction welding.
12	Characterization of weldments prepared by friction welding
13	To study the effect of gas flow rate on weld quality by MIG welding.
14	Application of welding Gauge.
15	Effect of GTAW parameters on weld bead morphology.

- 1) The Metallurgy of Welding, Brazing and Soldering J.F. Lancaster, George Alien and Unwin Ltd., London.
- 2) Introduction to Welding and Brazing D.R. Milner & R.L. Apps. Pergamon Press, London.

5. Reference Books

- 1) Manufacturing Technology (Foundry, Forming and Welding)-P.N.Rao, Tata Mc- Graw Hill.
- 2) The Physics of Welding- L.F.Lancaster, Pergamon Press.
- 3) Principles of Welding- R.S. Parmar.
- 4) Welding Technology- O.P. Khanna, Khanna Pub.
- 5) ASM Handbook Vol 6
- 6) AWS (American Welding Society)

6. Digital Learning Resources

www.nptel.ac.in

7. Question Paper Pattern for End Sem Exam:

As per Appendix A

Subject: Non Destructive Testing							
Program: B. Tech Metallurgical Engineering	Subject Code: MT0702	Semester: VII					

Teaching S	cheme			Examination Evaluation Scheme					
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total	
4	0	0	4	60	00	40	00	100	

1. COURSE OUTCOMES :

- To understand the significance of testing of metallic and non metallic materials and components without destroying them.
- To study the application of these methods in assessing reliability of components & plants.
- To study the life time assessment of components.
- To understand the principle and application of visual testing methods
- To understand principle of liquid penetration testing technique.
- To understand the principle of magnetic particle testing and its applications

2. Content

		Allotted hours
Unit 1	Fundamentals and introduction to non-destructive testing. Scope and limitations of NDT	8 hours
	Visual examination methods. Different visual examination aids.	
	Leak and pressure testing of industrial components. Various methods	
	of pressure and leak testing underlying principles of these testing systems.	
Unit 2	Dye penetrant Methods, Basic Principles, Capillary Action, Wetting and Non-Wetting	10 hours
	Characteristics, Different Types of Penetrants, Detailed Procedure and Recent Developments in DPT.	
	Magnetic Particle Testing methods, Basic Principles of MPT, magnetization methods demagnetization methods, MPT equipment	
	& instruments, sensitivity calibration of MPT equipment.	
	Ultrasonic methods of NDT-Basic principles of wave propagation,	
	types of waves, transducers and transducer materials, advantages and	
	limitations of UT.	

Unit 3	Pulse Echo and Through Transmission techniques of UT, Calibration methods, use of standard blocks, Thickness determination by ultrasonic method. Study of A, B and C scan presentations. Radiographic testing of metallic components. X-ray and Gamma- Ray radiography. Their principles, methods of generation. Industrial radiography techniques. Types of films, screens and penetrameters. Interpretation of radiographs. Film Processing. Radiography Contrast.	10 hours
Unit 4	Eddy current testing: Basic principles and applications such as detection of defects and characterization, sorting of materials, determination of film/coating thickness, measurement of electrical conductivity and magnetic permeability of materials. Eddy current testing equipments and its block diagram, different types of test coils and their applications. Acoustic Emission Technique. Conductivity & resistivity methods and their applications. Thermal methods of NDT. Selection Criteria for various NDT techniques.	10 hours

- 1) Practical Non-destructive Testing– Baldev Raj, T. Jayakumar & M. Thavasimuthu, Norosa Publishing House, New Delhi.
- 2) Non-destructive testing, Warren J. McGonnagle, Gordon Breach, Science

4. Reference Books

- 1) Ultrasonic Testing of Materials, J. Krautkramer
- Treaties on Non-destructive testing, by Dr. E. G. Krishnadas Nair, Non-destructive testing, R. Hatmshaw.
- 3) Ultrasonic Methods of Testing Materials, Leszek Filipezynski, Zdzisław Pawłowski

5. Digital Learning Resources

www.nptel.ac.in

6. Question Paper Pattern for End Sem Exam :

Subject: Alloy Design								
Program: B. Tech Metallurgical Engineering				Subject Co	Subject Code: MT0703			
				-				
Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	2	0	4	60	00	40	00	100

1. Course Outcomes :

- To provide knowledge about the basic concept of alloys and its properties
- To impart the importance of overall design in metallurgy.
- To help them understand all newer types of alloys and its applications
- To make them understand strengthening mechanisms used in alloying.
- To study alloy design for particular mechanical properties & its overall importance
- How newer materials can be developed and which can be useful in new technologies and development
- Application of computer based alloy designing

2. Contents

		Allotted
		hours
Unit 1	Concept & Effect on properties	8 hours
	Concept of alloy design, Steps in alloy design, Significance of alloy	
	design Single phase, dual phase and multiphase materials, Effect of	
	matrix on properties of materials, Effect of size, shape and	
	distribution of second phase on mechanical properties of alloys.	
Unit 2	Strengthening Mechanisms	10 hours
	Precipitation and particle coarsening, recrystallization and grain	
	growth. Solid/Liquid phase transformation in pure metals, single	
	phase alloys, constitutional super cooling and eutectic alloys.	
		101
Unit 3	Alloy Design for better mechanical properties	10 hours
	Alloy design for better tensile strength, ductility, toughness, fatigue	
	strength, creep strength, wear resistance and elevated temperature.	

Unit 4	Types of Alloy Steels & its applications	10 hours
	Types of Stainless Steels - Its Introduction, properties and	
	applications High strength low alloy steels, Maraging steels, High	
	speed steels, Hadfield steel and Super alloys. Alloy design of	
	lightweight and high Strength powder metallurgical Al based alloys	
	Application of computer-based methods for alloy designing.	

- 1) Boyer, H.E. (ed.), Selection of Materials for component Design: Source Book, American Society for Metals, Metals Park, Ohio.
- 2) Ashby, M.F. Materials Selection in Mechanical Design, New York: Pergamon, 1992.
- 3) Ranganathan S., Arunachalam V.S. and Cahn R.W. (Eds.), Alloy Design, Indian Academy of Science, Bangalore, 1981.
- 4) Tien John K. and Ansell George S. (Eds.), Alloy and Microstructural Design, Academic Press

4. Reference Books

- 1) ASM Handbook, Vol.1 & 2, Properties and Selection: Metals Park, Ohio.
- 2) Structure & Properties of Alloys Robert M. Brick, Robet B. Gordon & Arthur Phillips, Eurasia Publishing House (private)Ltd., New Delhi
- 3) Metals Hand Book Ninth Edition Vol 1.

5. Digital Learning Resources

www.nptel.ac.in

6. Question Paper Pattern for End Sem Exam:

Subject: Material Testing and Standards									
Program: B. Tech Metallurgical Engineering				Subje	ect Cod	le: MT0704		Semester: VII	
				T					
Teaching S	cheme			Examinat	ion Ev	aluation Scheme			
Lecture	Tutorial	Practical	Credits	University Theory Examinat		University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	0	2	4	60		60	40	40	200

1. Course Outcomes

- Understand different types of Mechanical testing (i.e. destructive testing and non destructive testing).
- Understand different types of standards related to different mechanical testing.
- Understand standard procedure for mechanical testing.

2. Contents

Unit1		
	Introduction: Importance of Material Testing. Classification of various types of testing methods. Selection of testing methods. Importance of calibration of testing instruments. Calibration methods and standards for various tests. Non-destructive testing – Importance, scope, advantages and limitations – Dye penetrant, radiographic magnetic, ultrasonic and	8 hours
	eddy current testing and their application.	
Unit2	Tensile test: Engineering stress –strain curve, true stress –strain curve, Instability in tension, Stress distribution at neck, principle of stress and strain measurement, bend test measurement of ductility and formability, compression test, yield stress and proof stress, universal tensile testing machine and tensometer. Numericals of Tensile test, Fatigue and Ductile Brittle Transition Temperature Hardness test: Introduction, Brinell, Vickers and Rockwell hardness tests, Meyer hardness test, Analysis of indentation by an indenter, Relationship between hardness and the flow curve, Micro-hardness tests, Hardness conversion, Hardness at elevated temperature.	10 hours

Unit3	Impact testing: Types of impact tests and their relative merits and	10 hours
	demerits. Ductile-brittle transitions behavior and its significance.	
	Torsion test: Introduction, Mechanical properties in torsion, Torsional	
	stresses for large plastic strains, Types of torsion failures, Torsion test	
	vs. tension test, Hot torsion test.	
Unit4	Fatigue and Creep Testing - Elementary treatment of fatigue	10 hours
	phenomenon, S - N curve and corrosion fatigue, fatigue testing	
	principle, Signification of Creep testing procedure , creep curve and	
	its interpretation, stress-rupture test. Metallurgical and mechanical	
	factors affecting, creep and fatigue failures.	
	Introduction to various standards for mechanical testing: ASTM	
	E8/E8M - Standard Test Methods for Tension Testing of Metallic	
	Materials, ASTM E21 - Standard Test Methods for Elevated	
	Temperature Tension Tests of Metallic Materials, ASTM E18:	
	Standard Test Methods for Rockwell Hardness of Metallic Materials,	
	ASTM E384: Standard Test Methods for Standard Test Method for	
	Strain-Controlled Fatigue Testing of Metallic Materials, ASTM 139:	
	Standard Test Methods for Conducting Creep, Creep-Rupture, and	
	Stress-Rupture Tests of Metallic Materials, ASTM E606: Standard	
	Test Method for Strain-Controlled Fatigue Testing, ASTM E466:	
	Standard Practice for Conducting Force Controlled Constant	
	Amplitude Axial Fatigue Tests of Metallic Materials, ASTM E9:	
	Standard Test Methods of Compression Testing of Metallic Materials	
	at Room Temperature, ASTM E209, SA 370- Hardness Testing,	
	SA370-Impact Testing, ASTM E6- D- Ductility and Bend Testing,	
	ASTM E6- E- Creep and Stress Relaxation Testing, ASTM E6- G-	
	Measurement and Calibration, ASTM E 190, ASTM E 527, ASTM E	
	92, ASTM E 139.	

3. Testing of Materials Lab (List of Experiments)

Experiment No	Title of Experiment
1	To study the Brinell hardness testing machine & perform the Brinell hardness test.
2	To study the Rockwell hardness testing machine & perform the Rockwell hardness test.
3	To study the Vickers hardness testing machine & perform the Vickers hardness test.

4	To determine the impact toughness of a given specimen by Izod test and Charpy
5	
5	To determine the tensile strength of specimen.
6	To study room temperature creep strength of specimen.
7	To study room temperature fatigue strength of specimen.
8	To perform compression & bending tests on UTM.
9	Visual Inspection of fractured surfaces.
10	To perform Dye Penetration Test for given sample.
11	Study of Magnetic particle tester.
12	Tostudy Ultrasonic Flaw Detector
13	To study Eddy Current Tester.
14	Detailed study of Radiographic Testing Method.
15	To study In situ Metallographic using replica technique

- 1) G. E. Dieter, Mechanical Metallurgy, McGraw Hill Book Company, 1987.
- 2) Testing of metallic materials by A.V.K Suryanarayana, PHI
- 3) ASTM standards

5. Reference Books

- 1) Physical Metallurgy Principles by R.E. Reed-Hill, East West Press.
- 2) Deformation and Fracture Mechanics of Engineering Materials -R. W. Hertzberb
- 3) Mechanical Behaviour of Materials -T. H. Courtney
- 4) ASM Handbook, NDT and Quality control.
- 5) Testing and Inspection of Engineering Materials- Davies, Taroxall and Wiscosil
- 6) Mechanical Testing of Metallic Materials D A Beument.
- 7) Engineering Materials Science C W Richards
- 8) Non Destructive testing Bac Gonnagle.

6. Digital Learning Resources

www.nptl.ac.in

7. Question Paper Pattern for End Sem Exam

As per Appendix A

		Si	ubject: Sel	ectior	n of Material	s and Failure An	alysis		
Program: B. Tech Metallurgical Engineering Subject Code: MT0705 Semester: VII									
Teaching S	Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	The	versity eory amination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	2	0	4		60	00	40	00	100

1. Course Outcomes:

- <u>Objective 1 (Technical Knowledge) -</u> To impart Broad knowledge of Metallurgical aspects of engineering materials selection & technology practices to support design, application, installation, manufacturing, operation and maintenance for successful careers in Academics/ Research & industry that meet the needs of Society and multinational companies
- <u>Objective 2 (Technical Skills)</u> To develop basic scientific principles and engineering fundamentals necessary to formulate, analyze and solve engineering &technical problems & demonstrate the ability to synthesize data and technical concepts for application to product design & developments.
- <u>Objective 3 (Professional Skills)</u> To Work effectively & efficiently as an individual and as a member of a multidisciplinary projects & social Activities.
- <u>Objective 4 (Social Awareness & Life-long Learning)</u> To be awareness of social concerns and professional responsibilities & ethics in the workplace. & also to demonstrate professional training and ability to adapt to changes in the workplace through formal and informal education

2. Contents

		Allotted hours
Unit 1	Philosophy of material selection, motivation for selection, relationship to available resources, concept of resource base, Criteria for selection of engineering materials – service requirements, ease of manufacturing, availability of materials and cost effectiveness. Selection for mechanical properties like strength, toughness, stiffness, fatigue, creep and temperature resistance.	8 hours

Unit 2	Selection for surface durability like corrosion resistance, wear	10 hours
	resistance. Relationship between material selection and material	
	processing.	
	Identification of required properties. Selection of materials based on	
	available property data and optimization to select the best material.	
	Case studies in material selection like materials for bearings, gears,	
	automobile structures, aircraft components, ship structures, etc.	
Unit 3	Importance of failure analysis and its relationship to material	10 hours
	selection, fundamental causes of failure, general practice in failure	
	analysis.	
	Failure- types and characteristics: Identification and characterization	
	of ductile and brittle type of failures. Fracture mechanism, fracture	
	modes and micro fractographic features	
Unit 4	Concept and Mechanism of Failure: Identification and	10 hours
	characterization of fatigue failures, types of fatigue, corrosion fatigue	
	and contact fatigue, etc. Corrosion and corrosion related failures such	
	as hydrogen embrittlement, stress corrosion cracking and high	
	temperature failures.	
	In-process failures: Case studies, Service failures: Case studies	

- 1) Selection and Uses of Engineering Materials F.A.A. Cranes & J.A. Charles, Butterworth & Com. Ltd., London.
- 2) Engineering Materials Vol. 1 & 2 Michael F. Ashby & David R.H. Jones, Pergamon Press, New York.
- 3) Engineering Materials-Selection and Value Analysis –H.J. Sharp, Elsevier Publishing Company Inc., New York.
- 4) Analysis of Metallurgical Failures- V.J. Colangelo & F.A. Heiser, John Wiley & Sons, New York.
- 5) Failure Analysis of Engineering Materials Charlie R. Brooks and Ashok Chaudhary, McGraw Hill, New York.
- 6) Metallurgy of Failure Analysis A.K. Das, McGraw Hill, New York.

4. Reference Books

- 1) Metals Handbook Eighth edition Failure Analysis and Prevention, American Society of Metals, Metals Park, Ohio.
- 2) Metals Handbook Eighth edition Fractography, American Society of Metals, Metals Park, Ohio.

- 3) Handbook of materials selection Myer Kutz, John Wiley & Sons, New York.
- 4) Handbook of materials selection for engineering applications- G.T. Murray, M. Dekker

5. Digital Learning Resources <u>www.nptel.ac.in</u>

6. Question Paper Pattern for End Sem Exam

	Subject: Advanced Ferrous Metallurgy (Elective – 3)								
Program: B. Tech Metallurgical Engineering				Subject Co	de: MT0706		Semester: VII		
Teaching Scheme Examination Evaluation Scheme									
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total	
4	0	0	4	60	00	40	00	100	

1. Course Outcomes :

The students will be able to know the basic concept of advancement in ferrous metallurgy, able to know thermodynamics and reaction between oxides and make them clear with reaction part, understand modern developments that have taken place in blast furnaces and other production of iron &steel, different methods of sponge iron production and also secondary steel making processes, recent trends in steel making & iron making.

The 'Metallurgist' will be able to acquire M Tech /ME / MSc(engg) & PhD degrees in order to enhance , sustain and nurture his/her professional career by :

Joining any national institutes like IIT, NIT, IISc in various specialized fields of metallurgical & materials engineering such as Industrial metallurgy, Steel technology.

For a 'Metallurgist', there are a lot of job opportunities with tremendous growth in almost all types of industrial sectors in the present scenario. These jobs include different functions such as Managerial role, Material Scientist, Techno-commercial Manager, Quality control & assurance, Marketing & Sales, Project & Planning.

Services such as ONGC, IOCL, SAIL, GAIL, ESSAR, ISPAT, laboratories of national and inter-national repute such as NASA, BARC, BARC, CSIR, NML, DRDO, DMRL, IPR, etc.

There is plenty of scope and feasibility for a 'Metallurgist' to go for self employment by setting up an 'Enterprise/ Industrial Unit in Setup a small foundry of ferrous and non-ferrous metals.

2. Contents

		Allotted hours
Unit 1	Thermodynamics of oxides and their reduction: Thermodynamics	8 hours
	and kinetics of iron oxide reduction. Kinetics of solid- solid and solid-	
	gas reactions.	

Unit 2	General Problems related to Indian Steel plants: Problems of Indian Steel Plants. High temperature properties of iron bearing materials.	10 hours
Unit 3	Pre-treatment Techniques: Pre-treatment of hot metal. Physico-chemical aspects of pre-treatment processes. Status of hot metal treatment in India. Electric Arc Furnace (EAF) steel making. Design of EAF-AC, DC electric arc. Latest trends in EAF design and operation. Secondary steel making processes. Alloy steel making in EAF using secondary refining. Continuous casting.	10 hours
Unit 4	Roll of synthetic slags. Electro-slag refining. Slag-metal reaction in iron and steel making. Ferro-alloy production. Application of plasma technology.	10 hours

- 1) Principles of secondary Processing and Casting of Liquid Steel-Ahindra Ghosh, Oxford & IBH, New Delhi.
- 2) Electrometallurgy of Steel and Ferro-alloys, Vol. I & II F.P.Edneral, Mir Pub., Moscow.
- 3) International Symposium on *Blast Furnace Iron Making*, Jamshedpur, Nov. 1985, Organised by the Indian Institute of Metals and Tata Iron & Steel Company Ltd.
- 4) Workshop on *Production of Liquid Iron using coal*, Eds. H.S.Ray et al, Allied Publishers Ltd., New Delhi, 1994.

4. Reference Books

1) Principles of secondary Processing and Casting of Liquid Steel-Ahindra Ghosh, Oxford & IBH, New Delhi.

5. Digital Learning Resources

www.nptel.ac.in

6. Question Paper Pattern for End Sem Exam:

Subject: Advanced Materials and Applications (Elective – 3)								
Program: B. Tech Metallurgical Engineering				Subject	Code: MT0707		Semester: VII	
Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	University Theory Examinatio	University Practical n Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
4	0	0	4	60	00	40	00	100

1. Course Outcomes

- The successful students will gain knowledge on special steels, alloy cast iron, light metals and some super alloys.
- After completion of this subject students will able to solve industrial problems and can replace tradition material by some of the advanced materials for better results.

2. Contents

		Allotted hours
Unit 1	Special steels Ferritic, Austenitic, Martensitic, Duplex and	8 hours
	Precipitation hardenable stainless steels, Dual phase steels, TRIP	
	steels, Maraging steels, High speed steels, Hadfield steels, Free	
	cutting steels, Ausformed steels, Tool Steels, manganese steels,	
	chrome steels, electrical steels, bearing steels, spring steels, heat	
	resistant steels, creep steels, HSLA steels	
	Alloy cast iron High silicon cast iron, Ni-hard, Heat resistant cast iron	
Unit 2	Light metals and their alloys Aluminum, magnesium and titanium	10 hours
	alloys, Metallurgical aspects, Mechanical Properties and applications	
	Super alloys Iron base, nickel base and cobalt base super alloys,	
	Composition, Properties and their application	
	Rapid Solidification Techniques, Production of metallic glasses,	
	Atomic arrangement, Comparison with crystalline alloys, properties	
	& applications	
Unit 3	Nanomaterials & technology Definition, Types of nanomaterials	10 hours
	including carbon nanotubes and nanocomposites, Methods for	
	creating nano structures, Processes for producing ultrafine powders -	

	physical synthesis and chemical synthesis, Physical and mechanical properties and their applications Smart materials Shape memory alloys, piezoelectric materials, Electro-rheological fluid, Magneto- rheological fluid	
Unit 4	Biomaterials Property requirement, Concept of biocompatibility, Cell-material interaction and body response to foreign materials, important biometallic alloys, Ni-Ti alloy, Co-Cr-Mo alloys Miscellaneous Advanced Materials Magnetic materials, Engineering polymers, ceramics and composites, aerospace materials, cryogenic materials, semi conducting and superconducting materials	10 hours

1) The Science and Engineering of Materials by D. R. Askeland and P. P. Phule, Thomson Publication, 2005.

4. Reference Books

- 1) Advances in Material Science by R. K. Dogra and A. K. Sharma, 2003.
- 2) Elements of Materials science by Van Black, 6th Edition, 2008
- 3) Engineering Materials and Applications by R. A. Flinn and P. K. Trojan, 1999.
- 4) Light Alloys: Metallurgy of Light Metals by I. J. Polmear, 1982.
- 5) Nano Technology by Gregory Tirp, Springer Verlag, 2005

5. Digital Learning Resources

http://www.ferrocare.com/specialsteels.pdf http://nptel.ac.in/courses/103103033/module9/lecture1.pdf

6. Question Paper Pattern for End Sem Exam:

Subject: Advanced Foundry Technology (Elective – 3)								
Program: B. Tech Metallurgical Engineering				Subject	Code: MT0708		Semester: VII	
Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
4	0	0	4	60	00	40	00	100

1. Course Outcomes:

The students are expected to have adequate knowledge and understanding on the following four areas of foundry technology as the outcome of this course:

- Newer materials which are in the state of development so also the newer processes that are more competitive, case of solidification software and ISO 9000 as measures of producing quality castings.
- Mechanization of foundry plants for faster rate of production and specifications for major equipment.
- Layout of foundry plants, maintenance of machinery, equipment and material handling system.
- Quality control measures at various sections in foundry including analysis of defects and salvage of defective castings.

2. Contents

		Allotted hours
Unit 1	New materials, processes & software applications: new core & mould binders & additives, new lining & refractory materials, magnetic moulding process, full mould process, vacuum moulding process, ISO-9000 computer applications in metal casting, use of solidification software & simulation, energy conservation in foundry industries.	8 hours
Unit 2	Foundry mechanization: mechanical equipment in a foundry, sand preparation & control, sand handling & conveying system, moulding machines:- sand slingers, pneumatic rammers, simultaneous jolt & squeeze, high pressure moulding, typical specifications for major equipment in foundry	10 hours

Unit 3	Plant site location: plant layout of small scale & medium scale &	10 hours
	large scale foundry, plant engineering /maintenance /services: plant	
	machinery & equipment, environmental pollution & its control in	
	foundry, consideration on layout & material handling system,	
	modernization & mechanization of a foundry.	
Unit 4	Casting defects analysis & salvaging of defective castings by using	10 hours
	techniques such as welding, brazing, braze welding & soldering,	
	burning on, patches & plugs, impregnations of castings, quality	
	control in pattern & mould making, melting & heat treatment, fettling	
	& cleaning, use of statistical methods in quality control of casting.	

- 1) Metal Casting: Principles and Practice by T. V. Raman Rao, New-Age International (P) Ltd. Publishers, New Delhi, 1998.
- 2) A textbook of Foundry Technology by M. Lal Dhanpat Rai & Sons, 1998.
- 3) Steel Foundry Practices by P. Bindulya.

4. Reference Books

- 1) Principles of Solidification and Materials Processing (Vol. 1 & Vol. 2) by R. Trivedi, J. A. Sekhar & J. Mozumdar.
- 2) International Conference on Management and Pollution in Foundries, 1990.
- 3) IIF Transactions, 1998.

5. Digital Learning Resources

www.nptel.ac.in

6. Question Paper Pattern for End Sem Exam

Subject: Phase Transformations (Elective – 3)									
Program: B. Tech Metallurgical Engineering					Subject Coc	le: MT0709		Semester: VII	
Teaching S	Teaching Scheme Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	The	versity ory mination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
4	0	0	4		60	00	40	00	100

1. Course Outcomes

- This course will provide the student with an understanding of the basic principles and mechanisms underlying both solid-solid and liquid-solid phase transformations with an emphasis on metallic materials.
- The objective is to apply the concepts of thermodynamics, diffusion and kinetics, and crystallography (crystal structure and symmetry in materials) to develop a clear understanding of the free energy changes and kinetics associated with various types of phase transformations.
- An ability to apply and couple the basic concepts of thermodynamics, diffusion, and crystallography.

2. Contents

		Allotted hours
Unit 1	Review of Thermodynamics: Equilibrium, Single Component	8 hours
	Systems, Binary Solutions, Equilibrium in Heterogeneous Systems,	
	Binary Phase Diagrams, Kinetics of Phase Transformations	
	Review of Diffusion: Atomics Mechanisms of Diffusion, Interstitial	
	diffusion, Self Diffusion, Vacancy Diffusion, Diffusion in	
	Substitutional Alloys	
Unit 2	Solidification: Nucleation in pure metals, Growth of a pure Solid,	10 hours
	Alloy Solidification, Solidification during Quenching from Melt	
Unit 3	Diffusional Transformations in Solids:	10 hours
	Nucleation in solids - Homogeneous and Heterogeneous, Overall	
	Transformation Kinetics – TTT Diagrams, Precipitation in Age	
	Hardening Alloys, Cellular Precipitation, Eutectoid Decomposition,	
	Massive Transformations, Ordering Transformations	

Unit 4	Diffusionless Transformations:	10 hours
	Characteristics of Martensitic Transformations, Martensite	
	Crystallography, Martensite Nucleation, Martensite Growth,	
	Tempering of Ferrous Martensite, Strain induced transformation	

1) Phase Transformations in Metals and Alloys, Third Edition, David A. Porter, Kenneth E. Easterling, Mohamed Sherif; CRC Press.

4. Reference Books

- 1) Transformations in Metals, P.G. Shewmon, McGraw-Hill, 1969.
- 2) Principles of Phase Transformations and Heat Treatment, A. K. Mallik, I. I. T. Bombay.

5. Digital Learning Resources

NPTEL Lectures on Phase Transformation (<u>www.nptel.ac.in</u>)

6. Question Paper Pattern for End Sem Exam:

		Subj	ect: Adva	nces in Thin	Film 7	Fechnology (Ele	ctive - 3)		
Program: B. Tech Metallurgical Engineering				Subjec	ct Code	e: MT0710		Semester: VII	
Teaching S	cheme		Examination Evaluation Scheme						
Lecture	Tutorial	Practical	Credits	University Theory Examination		University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
4	0	0	4	60		00	40	00	100

1. Course Outcomes

- Discuss the differences and similarities between different vacuum based deposition techniques,
- Evaluate and use models for nucleating and growth of thin films,
- Asses the relation between deposition technique, film structure, and film properties,
- Discuss typical thin film applications,
- Motivate selection of deposition techniques for various applications.

2. Contents

		Allotted hours
Unit 1	Role of Thin films Technology and Devices; Vacuum evaporation- Hertz- Knudsen equation, evaporation from a source and film thickness uniformity.	8 hours
Unit 2	Basics of vacuum science, creation of vacuum: rotary, diffusion, getter ion, turbo molecular, and cryo pumps, measurement of vacuum: Penning, Pirani, ionization gauges, B-A gauge. Designing a typical vacuum system, vacuum leak detection: helium leak detector, residual gas analyzer.	10 hours
Unit 3	Thin film properties like Mechanical properties: adhesion and stress measurements, electrical properties, resistivity variation, Hall Effect, Optical properties: reflection, refraction, ellipsometry, reflecting and antireflecting films.	10 hours

Unit 4	Thin film analysis ion beam sputtering, selective surfaces, depth	10 hours
	profiling, Study of inter Diffusion in thin films using XPS, AES, SIMS	
	and RBS. Study on special coatings like Graphene and Photovoltaic	

- 1) M. Ohring, The materials science of thin films, Academic press
- 2) D. L. Smith, Thin-film deposition, principles and practice, McGraw-Hill
- 3) K. L. Chopra, Thin Film Phenomena, Robert E. Krieger publishing

4. Reference Books

- D. M. Mattox, Handbook of physical vapor deposition (PVD) processing, Oxford, c2010. (2nded.)
- P. M. Martin (Eds), Handbook of deposition technologies for films and coatings, Oxford, 2009. (3rded.)
- 3) D Clocker, S I Shah (Eds), Handbook of Thin Film Process Technology, Institute of Physics Publishing, London 1995.
- 4) W N G Hitchon, Plasma Processes for semiconductor Fabrication, Cambridge University Press, Cambridge 1999.
- 5) Elshabini-Riad, A. R. Aicha, Thin film technology handbook / New York: McGraw-Hill, c1998. (TK7872.T55 E47 1998)
- H. Lüth, Solid surfaces, interfa ces and thin films, Heidelberg, New York, Springer-Verlag, c2010. (5thed.)

5. Digital Learning Resources

http://nptel.ac.in/

6. Question Paper Pattern for End Sem Exam

	Subject: Industrial Welding Codes and Standards (Elective – 3)										
Program: B. Tech Metallurgical Engineering				Subject Co	ode: MT0711		Semester: VII				
Teaching S	cheme		Examination Evaluation Scheme								
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total			
4	0	0	4	60	00	40	00	100			

1. Course Outcomes

- Description of welding codes and materials specifications.
- Fundamental principles, methods, and approaches of welding processes.
- Developing the theoretical background of welding processes' applicability and effectiveness.
- To understand the importance and necessity of selection of appropriate consumable, welding processes, welding parameters and testing procedures.
- Improve his/her theoretical background on applicability of a welding process, parameters and weld testing.
- Be aware of the use of various welding codes and standards widely used in industries.

2. Contents

		Allotted hours
Unit 1	Fabrication In Piping Industry: Process and product standards for	8 hours
	manufacturing of pipe – welding procedure and welder qualification,	
	field welding and inspection. Structural Welding Codes: Design	
	requirements, allowable stress values, workmanship and inspection.	
Unit 2	Fabrication of Pressure Vessel: Design requirements, fabrication methods, joint categories, welding and inspection, post weld heat treatment and hydrotesting, (ASME Sec VIII-1 & 2).	10 hours
Unit 3	Welding procedure: Welding procedure specification, procedure qualification records. Welder Qualification: Performance qualification, variables.	10 hours

Unit 4	Materials: Introduction to materials standard and testing of materials,	10 hours
	consumables testing and qualification as per ASME / AWS	
	requirements. Consumables: Types of consumables, Consumable	
	testing and qualification as per ASME / AWS requirements.	

1) Welding Engineering and Technology by R. S. Parmar, Khanna Publishers.

4. Reference Books

- 1) ASME Section VIII Division 1,2
- 2) ASME Section IX
- 3) ASME Section II Part A and C
- 4) API 5L
- 5) API 1104.
- 6) AWS D1.1 Structural Welding Code

5. Digital Learning Resources

http://nptel.ac.in/

6. Question Paper Pattern for End Sem Exam

	Subject: Disaster Management											
Program: B	. Tech Meta	llurgical En	gineering	Su	ıbject Code: CV	0712	Semester:	VII				
								-				
	Teaching	Scheme		Ex	amination Eva	luation Schem	ie					
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total				
1	0	0	0	24/60	0	16/40	0	100				

Course Objectives:

1. To explain students the conceptual applications and principles of management to mitigate various disasters.

Course Outcome:

- 1. Understand disasters, disaster preparedness and mitigation measures.
- 2. Understand role of IT, remote sensing, GIS in risk reduction.
- 3. Understand disaster management acts and guidelines along with the role of various stackholders during disasters.

COURSE CONTENTS:

UNIT-I

Introduction

Concepts and definitions: disaster, hazard, vulnerability, risk, capacity, impact, prevention, mitigation)

UNIT-II

Disasters classification

Natural disasters (floods, drought, cyclones, volcanoes, earthquakes, tsunami, landslides, coastal erosion, soil erosion, forest fires etc.); manmade disasters (industrial pollution, artificial flooding in urban areas, nuclear radiation, chemical spills etc); hazard and vulnerability profile of India, mountain and coastal areas, ecological fragility

Approved Vide Agenda Item No. 03 of Minutes of Meeting of Academic Council held on 11 July 17

[04]

[03]

UNIT-III

Disaster Impacts

Disaster Impacts (environmental, physical, social, ecological, economic, political, etc.); health, psycho-social issues; demographic aspects (gender, age, special needs); hazard locations; global and national disaster trends; climate-change and urban disasters. Disaster Risk Reduction **Disaster**

management cycle

Phases; prevention, mitigation, preparedness, relief and recovery; structural and non-structural measures; risk analysis, vulnerability and capacity assessment; early warning systems, Post-disaster environmental response (water, sanitation, food safety, waste management, disease control); Roles and responsibilities of government, community, local institutions, NGOs and other stakeholders; Policies and legislation for disaster risk reduction, DRR programmes in India and the activities of National Disaster Management Authority.

UNIT-IV

Applications of Science and Technology for Disaster Management and Mitigation

Geo-informatics in Disaster Management (RS, GIS and GPS), Disaster Communication System (Early Warning and Its Dissemination), Land use planning and development regulations, Disaster safe designs and Development Regulations, Disaster safe designs and Construction structural and Non structural Mitigation of Disasters. Science and Technology Institutions for Disaster Management in India.

Text Books:

1. Ghosh G.K., 2006, Disaster management, APH Publishing Corporation.

Reference Books:

- 2. Pradeep Sahni, 2004, Disaster Risk Reduction in South Asia, Prentice Hall.
- Singh B. K., 2008, Handbook of Disaster Management: techniques and guidelines, Rajat Publications

Approved Vide Agenda Item No. 03 of Minutes of Meeting of Academic Council held on 11 July 17

[02]

Web resources:

- 1. http://nidm.gov.in/PDF/Disaster_about.pdf
- 2. https://www.slideshare.net/Jyothi19587/disaster-ppt
- 3. https://www.slideshare.net/SayefAmin1/natural-disaster-its-causes-effects
- 4. https://www.slideshare.net/rahulp4/man-made-disasters-23947076
- 5. https://www.slideshare.net/urveshprajapati3990/disaster-management-in-india-56546805
- 6. <u>www.ndmindia.nic.in/presentation/Presentation%20by%20JS%20(DM)%20(1).ppt</u>
- 7. <u>https://www.geospatialworld.net/article/information-technology-and-natural-disaster-management-in-india/</u>
- 8. http://www.bvicam.ac.in/news/NRSC%202007/pdfs/papers/st_230_03_02_07.pdf
- 9. http://eagri.tnau.ac.in/eagri50/ENVS302/pdf/lec13.pdf
- 10. http://nptel.ac.in/courses/105105104/pdf/m16l39.pdf
- 11. https://www.unisdr.org/we/inform/events/50220

MOOCs:

1. https://www.mooc-list.com/tags/disaster-management

8TH SEMESTER

B-TF	B-TECH METALLURGICAL ENGINEERING, SEMESTER –VIII TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017												
				TEACHING SCHEME				EXAMINATION SCHEME					
SR	CODE	SUBJECTS				STIC	JRS	THEOR		Y	PRACT		
NO			L	CREDITS	HOURS	CIE					TOTAL		
)		MID	IE	ESE	CIE	ESE	
1	MT0801	Project	00	00	40	20	40	00	00	00	60	40	100
	TOTAL			00	40	20	40	00	00	00	60	40	100

				Subject: Pr	roject			
Program: B. Tech Metallurgical Engineering				Subject Co	Subject Code: MT0801			
Teaching S	cheme			Examination E	valuation Scheme	9		
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
0	0	40	20	00	60	00	40	100

Evaluation Scheme:

A four member committee designated as project evaluation committee member duly nominated by the HOD from amongst the faculty member will evaluate the project of each student under the following headings

1) CIE Internal Evaluation (40 Marks):

CIE component will consist of Report (40 Marks): This includes the Seminar Report writing. The report should include Abstract, Introduction, Literature Survey, Review of Experimental/Computational Work, Discussion and Conclusion.

2) End Sem Evaluation (60 Marks):

Oral Presentation (40 Marks): A presentation is the process of presenting a topic to an audience of students and minimum two professors.

Viva (20 Marks): This includes how the student handles Question and Answer session after presentation.